Study of the contribution of copy number variation to the pathogenesis of bicuspid aortic valve associated aortopathy

Luycks Daël 1, Kumar A. Ajay 2, Raymund Eden 3, Dekayser Emily 4, Vanstraeten Katheline 5, Vandevoort Geert 5, Wittenmann Florian 5, Pieter Christophe 5, Hanneline Jean-Marie 2, Goïdout Guillaume 2, Massan Emmanuel 7, Albertson Julietta 1, Xavier Jeunemaitre 1, Eriksson Per 6, Mohamed Salah A6, Kempers Marlies 7, Salenik Simon 6, Dupuis-Anthone 1, Andolfinger Gregor 7, Data Hany A 1,2,3, Venstraeten Albrecht 5, Van Laer Luuk 5, Luycks L. Bart 1,2,5,7 RISVAC-Luebeck consortium

1. Department of Human Genetics, University of Luebeck, Luebeck, Germany; 2. Institute of Medical Genetics, University of Luebeck, Luebeck, Germany; 3. Department of Medicine, Institute of Molecular Medicine, University of Luebeck, Luebeck, Germany; 4. Department of Cardiology, Heart Center, University Hospital, Lille, France; 5. Department of Cardiology, Heart Center, University Hospital, Luebeck, Germany; 6. Department of Cardiovascular Medicine, Karolinska University Hospital, Stockholm, Sweden; 7. Department of Medical Genetics, University of Groningen, Groningen, The Netherlands; 8. Department of Pediatrics, Division of Pediatric Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; 9. Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA

Introduction

Affecting 1-2% of the population, bicuspid aortic valve (BAV) is the most common congenital heart malformation. Although it frequently remains asymptomatic, 10-20% of individuals with BAV develop life-threatening thoracic aortic aneurysms (TAA). Up to 10% of patients with left-sided heart defects have been reported to carry a deleterious copy number variation (CNV). Hence, we hypothesize that deleterious CNVs may also contribute to the pathogenesis of BAV/TAA.

Methods

95 unrelated BAV/TAA patients

- HumanCytoSNP-12 BeadChip

1,390 CNVs

Filtering

1. Low frequency CNVs (<1%)
 - 35 cohorts of DGV
 - HapMap database

2. Potential role in cardiovascular system
 - Gene function
 - Gene expression
 - Animal models

16 prioritised CNVs

Experimental confirmation

7 candidate CNVs

Extra genetic evidence of CNV involvement

1. Overlapping CNVs in patients with CHD
 - DECIPHER
 - In-house WES data of 67 BAV/TAA patients

2. Disruption of highly interactive chromatin domains (Online Hi-C data)

2 candidate genes: DGCR6 and TBX20

In search for extra genetic evidence for gene involvement

Rare variant burden analysis between 637 BAV/TAA patients and gnomAD database

TBX20

Conclusion

I. No major contribution of deleterious CNVs to the aetiology of BAV/TAA

II. Causal CNVs or risk-modifying CNVs may exist though

III. Evidence for involvement of TBX20 in the aetiology of BAV/TAA

Results

In our BAV/TAA cohort, a total of 7 candidate CNVs were identified, of which the characteristics are summarised in Table 1. Figure 2 demonstrates all the genetic evidence for its involvement in BAV/TAA disease.

Table 1: Candidate CNVs

Chromosome	CN	Variants	Probing technique	Protein-coding genes	CNV frequency	Additional evidence	TAD length \%
1p26.13	3	MLPA	0.26	B3G3, G3G1, HSPA1B, INTB1P18, FMR1, PAK1, TNN1, TNNIT1, APRIL, VDR, SEMA4D, SMGR1	Only for RMHD		
1p14.2*	3	qPCR	0.02	DPF4, SPG5B, NPY3R1	2	Yes	
13q22.1	3	MAQ	0.01	CEP216	3	No	No
16p13.11	3	MLPA	0.06	ARSE, AMN95S, UVC	2	No	
19p12	3	MAQ	0.19	3	No	Yes	
19p13.2	3	MLPA	0.03	TBX20	3	No	No
22q11.21*	1	MAQ	0.9	ARCE, TDP52, SFN	1	Yes	9

Gene of interest in bold; underlined genes are not affecting the cardiovascular system (autosomal recessive/dominant, susceptibility genes) (GUCY2C, CDH19, DMD, EVC, PTPN11, USH1C, SMAD4, B3G3, CEAS2, PSEN1, PSEN2, PDGFRB, NDRG1, MYH6, ELN, LMNA, TNNT2); Duplication (DGV); HapMap database; MutationTaster2, Polyphen2 and Sorting Intolerant From Tolerant (SIFT). *Identified within the same BAV/TAA patient.

In search for extra genetic evidence for CNV involvement

Figure 1: The aortic valve.

The aortic valve usually consists of three semilunar shaped leaflets. A bicuspid aortic valve consists of two unequally sized leaflets, resulting from a fusion of two out of the three valve leaflets.

Figure 2: Extra genetic evidence for TBX20 involvement in aetiology of BAV/TAA.

(A) Extra genetic evidence for CNV involvement. Location of TBX20 gene on chromosome 7. In DECIPHER, two overlapping deletions, marked by red bars, were identified in patients with a cardiovascular feature i.e. an inherited notch and ventricular septal defect. Hi-C data in gnomAD were suggestive for a TAD boundary near TBX20 that is affected by the CNV. (B) TBX20 variants identified in BAV/TAA cases. Segregation analysis and next-generation sequencing identified variants in patients with CHD and in a CHD proband. The arrow indicates the family’s proband; squares are males; circles are females; filled symbols indicate BAV/TAA (bicuspid aortic valve-related thoracic aortic aneurysm); plus symbol indicates presence of the variant; minus symbol represents absence of the variant. Overview of all TBX20 variants identified within our BAV/TAA cohort using next-generation sequencing plotted on the protein structure. Overview of frequencies and in-silico predictions of TBX20 variants using gnomAD database, Combined Annotation Dependent Depletion (CADD), MutationTaster2, Polyphen2 and Sorting Intolerant From Tolerant (SIFT). NA, not applicable.