Aortic Stenosis in Octagenerians: TAVI vs. Surgery

Prof. Dr. I. Rodrigus
Head of Department of Cardiac Surgery
Antwerp University Hospital
Luik 6/10/2012
Aortic valve replacement in the elderly
Severe Aortic Stenosis in Octogenarians: Is Operation an Acceptable Alternative?

Ph. Deleuze, MD, D. Y. Loisance, MD, F. Besnainou, MD, M. L. Hillion, MD, Ph. Aubry, MD, G.Bloch, MD, and J. P. Cachera, MD

Service de Chirurgie Thoracique et Cardiovasculaire, CHU Henri Mondor, Créteil, France

From 1981 to 1989, 60 patients more than 80 years of age were referred for operation for severe calcific aortic stenosis. All patients were symptomatic: 13 in New York Heart Association (NYHA) functional class II, 28 in class III, and 19 in class IV. The preoperative mean cardiothoracic ratio was 0.58 ± 0.09; the mean valve area, 0.52 ± 0.14 cm²; and the mean aortic valve gradient, 62 ± 18 mm Hg. Left ventricular function was impaired in 30 patients (ejection fraction < 0.40). Coronary arteriography was performed in 10 patients. Aortic replacement used bioprosthesis in all 60 patients associated with aortocoronary bypass (in 5) and mitral valve replacement (in 1). One-month mortality rate was 28% (17 patients) due to cardiac failure (in 9), pulmonary complications (in 6), and neurological complications (in 2). Early mortality was not correlated with preoperative angina, cardiothoracic ratio, associated operation, and cross-clamping time. It was not obviously correlated with preoperative functional class but correlated positively with urgent operations and with left ventricular function (40% mortality in patients with ejection fraction < 0.40 versus 16% mortality in others). Hospital morbidity was 68%. Mean hospitalization was 15 ± 7 days. There were four late deaths. Thirty-nine patients are long-term survivors (3 months to 7 years): 27 in class I, 10 in class II, and 2 in class III due to primary valve failure. The actuarial survival probability is 65% at 1 year and 61% at 5 years. In summary, the good long-term quality of life justifies the high postoperative risk in octogenarians. Early operation before cardiac function impairment improves the results.

SAVR in the nineties

Aortic valve surgery in the elderly.

Mullaney CJ.
Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.

Abstract
As the population ages, aortic valve replacement, particularly for aortic stenosis, has become more common. Although many patients have considerable coexisting morbidity, almost all symptomatic patients are candidates for surgery. Once symptoms develop, surgery should not be unduly delayed, because the operative mortality clearly increases in the presence of poor left ventricular function, heart failure, and New York Heart Association Class III or IV symptoms. Operative difficulties often are related to fragile tissues, a small aortic annulus, and extensive calcification of the aortic annulus and root. In the author's experience, approximately 10% of these patients undergo aortic annulus and root enlargement using pericardium. A tissue valve is the preferred prosthesis. Operative mortality for elective surgery in patients older than 80 years of age is 4-10%, depending on whether associated procedures are required (eg, coronary artery bypass grafting) or whether the patient has had previous surgery. Postoperative neurologic events are important complications that are more common in the elderly. Outcome after successful surgery is excellent, with a 5-year survival of approximately 60%. The vast majority of patients have an improved symptomatic status.
Aortic valve surgery in octogenarians: predictive factors for operative and long-term results

Philippe Kolh a,*, Arnaud Kerzmann a, Charles Honore a, Laetitia Comte b, Raymond Limet a

a Cardiotoracic Surgery Department, University Hospital of Liège, Liège, Belgium
b Department of Biostatistics, University Hospital of Liège, Liège, Belgium

Variables associated with operative mortality and prolonged hospital stay, by multivariable analysis

<table>
<thead>
<tr>
<th>Variables</th>
<th>p-value</th>
<th>OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predictive of operative mortality</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urgent procedure</td>
<td>0.003</td>
<td>4.3 (2.3–7.0)</td>
</tr>
<tr>
<td>Associated CABG</td>
<td>0.009</td>
<td>3.9 (1.8–5.7)</td>
</tr>
<tr>
<td>NYHA functional class</td>
<td>0.01</td>
<td>2.2 (1.2–3.9)</td>
</tr>
<tr>
<td>Percutaneous aortic valvuloplasty</td>
<td>0.04</td>
<td>1.7 (0.9–3.6)</td>
</tr>
<tr>
<td>Predictive of prolonged hospital stay a (>15 days)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>0.006</td>
<td>0.9 (0.9–1.0)</td>
</tr>
<tr>
<td>Associated CABG</td>
<td>0.009</td>
<td>0.7 (0.6–0.9)</td>
</tr>
<tr>
<td>Urgent procedure</td>
<td>0.01</td>
<td>0.4 (0.2–0.8)</td>
</tr>
</tbody>
</table>

OR, odds ratio; CI, confidence interval; CABG, coronary artery bypass grafting; NYHA, New York Heart Association.

a The model assessed the probability of leaving the hospital, and therefore a risk ratio of less than 1% is predictive of prolonged hospital stay.
Belgian data on cardiac surgery

<table>
<thead>
<tr>
<th></th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reporting center</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>29</td>
<td>29</td>
<td>28</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>Cardiac operations</td>
<td>11437</td>
<td>12773</td>
<td>13635</td>
<td>13694</td>
<td>12920</td>
<td>12876</td>
<td>12918</td>
<td>12356</td>
</tr>
<tr>
<td>Isolated CABG</td>
<td>7008</td>
<td>7661</td>
<td>7785</td>
<td>7422</td>
<td>6654</td>
<td>6369</td>
<td>6209</td>
<td>5759</td>
</tr>
<tr>
<td>Off-pump</td>
<td>1575</td>
<td>2062</td>
<td>2424</td>
<td>2423</td>
<td>2142</td>
<td>1992</td>
<td>1774</td>
<td>1598</td>
</tr>
<tr>
<td>On-pump</td>
<td>5433</td>
<td>5599</td>
<td>5361</td>
<td>4999</td>
<td>4512</td>
<td>4377</td>
<td>4435</td>
<td>4161</td>
</tr>
<tr>
<td>Valve only</td>
<td>1664</td>
<td>1920</td>
<td>2108</td>
<td>2221</td>
<td>2110</td>
<td>2118</td>
<td>2273</td>
<td>2385</td>
</tr>
<tr>
<td>CABG + Valve</td>
<td>859</td>
<td>1074</td>
<td>1292</td>
<td>1338</td>
<td>1315</td>
<td>1325</td>
<td>1417</td>
<td>1267</td>
</tr>
</tbody>
</table>

Number of major cardiac operations - age distribution

<table>
<thead>
<tr>
<th>Age group</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>433</td>
<td>503</td>
<td>464</td>
<td>505</td>
<td>520</td>
<td>558</td>
<td>573</td>
<td>598</td>
</tr>
<tr>
<td>2-15</td>
<td>238</td>
<td>279</td>
<td>270</td>
<td>283</td>
<td>253</td>
<td>254</td>
<td>264</td>
<td>276</td>
</tr>
<tr>
<td>16-29</td>
<td>106</td>
<td>127</td>
<td>149</td>
<td>149</td>
<td>127</td>
<td>127</td>
<td>136</td>
<td>124</td>
</tr>
<tr>
<td>30-39</td>
<td>197</td>
<td>190</td>
<td>211</td>
<td>205</td>
<td>198</td>
<td>188</td>
<td>184</td>
<td>169</td>
</tr>
<tr>
<td>40-49</td>
<td>664</td>
<td>735</td>
<td>723</td>
<td>695</td>
<td>653</td>
<td>675</td>
<td>645</td>
<td>666</td>
</tr>
<tr>
<td>50-59</td>
<td>1769</td>
<td>2042</td>
<td>2137</td>
<td>2084</td>
<td>1988</td>
<td>2025</td>
<td>1943</td>
<td>1726</td>
</tr>
<tr>
<td>60-69</td>
<td>3377</td>
<td>3456</td>
<td>3758</td>
<td>3533</td>
<td>3455</td>
<td>3285</td>
<td>3339</td>
<td>3176</td>
</tr>
<tr>
<td>70-79</td>
<td>3954</td>
<td>4613</td>
<td>4898</td>
<td>5156</td>
<td>4577</td>
<td>4523</td>
<td>4515</td>
<td>4323</td>
</tr>
<tr>
<td>80-89</td>
<td>679</td>
<td>807</td>
<td>1012</td>
<td>1059</td>
<td>1079</td>
<td>1215</td>
<td>1320</td>
<td>1285</td>
</tr>
<tr>
<td>>=90</td>
<td>20</td>
<td>21</td>
<td>13</td>
<td>25</td>
<td>70</td>
<td>15</td>
<td>13</td>
<td>13</td>
</tr>
</tbody>
</table>
And then….there was TAVI!

- Indications
- Frailty
- EuroSCORE
- Alternative access routes
- What is best for the patient?
A prospective survey of patients with valvular heart disease in Europe: The Euro Heart Survey on Valvular Heart Disease

31.8% of patients were not treated surgically, mainly because of high age and/or severe comorbidity.
Guidelines on the management of valvular heart disease (version 2012)

The Joint Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS)
Indications

- Evaluation:
 - Careful questioning for the presence of symptoms
 - Characteristic systolic murmer
 - Echocardiography is the key diagnostic tool
 - Doppler Echocardiography is the preferred technique for assessing AS severity
 - TOE is rarely helpful for quantification
 - Exercise testing is contraindicated in symptomatic patients
 - MSCT and CMR provide additional information

Table 4 Echocardiographic criteria for the definition of severe valve stenosis: an integrative approach

<table>
<thead>
<tr>
<th></th>
<th>Aortic stenosis</th>
<th>Mitral stenosis</th>
<th>Tricuspid stenosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valve area (cm²)</td>
<td><1.0</td>
<td><1.0</td>
<td>–</td>
</tr>
<tr>
<td>Indexed valve area (cm²/m² BSA)</td>
<td><0.6</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Mean gradient (mmHg)</td>
<td>>40⁰</td>
<td>>10⁰</td>
<td>≥5</td>
</tr>
<tr>
<td>Maximum jet velocity (m/s)</td>
<td>>4.0⁰</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Velocity ratio</td>
<td><0.25</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

BSA — body surface area.
*In patients with normal cardiac output/transvalvular flow.
²Useful in patients in sinus rhythm, to be interpreted according to heart rate.
Adapted from Baumgartner et al.13
1. “Early valve replacement should be strongly recommended in all symptomatic patients with severe AS who are otherwise candidates for surgery.”

2. “The management of patients with classical low-flow, low-gradient AS is more difficult. …Final decision-making should take into account the patient’s clinical condition, degree of valve calcification, the extent of coronary disease, and the feasibility of revascularization.”

3. “The decision to operate on asymptomatic patients requires careful weighing of the benefits against the risks.”
Asymptomatic AS?

 - To optimize survival, earlier aortic valve replacement should be considered even in asymptomatic patients before severe left ventricular hypertrophy or dysfunction develops

 - … the natural history of asymptomatic AS is not benign and survival is dramatically improved by AVR.

- “Outcome of 622 adults with asymptomatic, hemodynamically significant aortic stenosis during prolonged follow-up”, Pellikka, Circulation 2005;111:3290
 - Most patients with asymptomatic, hemodynamically significant AS will develop symptoms within 5 years. Sudden death occurs in 1%/year.
 - N=622, mean age 72 years
 - Probability of remaining free of cardiac symptoms while unoperated at 1, 2 and 5 years: 82 %, 67 % and 33 %
 - 352 (57 %) underwent AVR and 265 (43 %) died
Isolated AVR > 70 y (2003-2008), n=179
Logistic ES <70 and >70 y (N=179)

- M: 51.4%, F: 48.6%, Mean log ES: 10.69 % (range 3.2-83.8)
Who is at risk to die after AVR?

- N=11 (6%)
- M: 3 / F: 8
- Mean age: 81 y (range 75 - 90)
- Mean log ES: 21.45 % (range 7.85 - 83.45)
- Median log ES: 15.34 %
- All patients were extubated within 12 hours of the operation
- The first signal of deterioration was respiratory failure and pneumonia !!!
Why do patients die after AVR?

- Respiratory failure followed by hemodynamic deterioration
- Renal failure
- Atrial fibrillation in hypertrophic ventricle
- CVA (n=1)
- Nasopharyngeal bleeding (n=1)
- Preoperative factors:
 - Peripheral vessel disease (n=4)
 - Underweight (n=2)
 - Mitral disease (n=3)
 - COPD (n=1)
 - Redo after CABG (n=3)
EuroSCORE is imprecise for prediction of mortality

<table>
<thead>
<tr>
<th>Topic</th>
<th>Author</th>
<th>Publication Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aortic Valve replacement in octogenerians: utility of risk stratification</td>
<td>Leontyev</td>
<td>Ann Thorac Surg 2009;87:1440</td>
</tr>
<tr>
<td>Overestimation of aortic valve replacement risk by EuroSCORE: implications for percutaneous valve replacement</td>
<td>Osswald</td>
<td>Eur Heart J 2009;30:74</td>
</tr>
<tr>
<td>High mortality in late octogenerians undergoing isolated aortic valve replacement for aortic valve stenosis: EuroSCORE underestimates mortality in this cohort</td>
<td>Lichtenberg</td>
<td>Thorac Cardiovasc Surg 2012</td>
</tr>
<tr>
<td>Does EuroSCORE predict length of stay and specific postoperative complications after heart valve surgery?</td>
<td>Toumpoulis</td>
<td>J Heart Valve Dis 2005;14:243</td>
</tr>
<tr>
<td>High-risk aortic valve replacement: are the outcomes as bad as predicted?</td>
<td>Grossi</td>
<td>Ann Thorac Surg 2008;85:102</td>
</tr>
</tbody>
</table>

Yes, we can operate on octagenerians with an acceptable mortality rate, which is usually overestimated by the common risk scores.
Which patient will do better with TAVI?

- **Indications for TAVI**
 - Should be performed in hospitals with cardiac surgery on-site
 - A “heart team” that assesses individual patient’s risks, as well as technical suitability of TAVI access issues, should be best able to make decisions
 - Eligible patients should have a life expectancy of more than 1 year and should also be likely to gain improvement in their quality of life, taking into account their comorbidities
 - TAVI is recommended in patients with severe symptomatic AS who are considered unsuitable for conventional surgery because of severe comorbidities.
 - Among high-risk patients the decision should be individualized
 - Heart team favors TAVI, Frailty, Porcelain aorta, Patent grafts, chest radiation
High risk SAVR: Porcelain aorta

- Alternative cannulation
- Aortic clamping
- Endarterectomy of the ascending aorta
- L apical to aorta valved bypass
- Composite valve bypass with CABG
- Deep hypothermic circulatory arrest
High risk SAVR: Etiology of chest deformities

• Neoplasms
 • Primary tumors
 • Metastatic tumors
 • Involvement by lung or breast cancer
 • Radiation induced tumors

• Infection
 • Mediastinitis
 • Median sternotomy wound infection
 • Osteomyelitis
 • Costochondritis

• Radiation necrosis

• Trauma
High risk SAVR: COPD

- Reason for dyspnea?
- Moderate COPD despite bronchodilators:
 - Consider TAVI
- Severe COPD and/or FEV$_1$ < 1.0 L/min:
 - contraindication for surgery

TABLE 1: GOLD CLASSIFICATION OF COPD

<table>
<thead>
<tr>
<th>Stage</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>0: At risk</td>
<td>Normal spirometry</td>
</tr>
<tr>
<td>I: Mild COPD</td>
<td>FEV$_1$/FVC \geq 70%</td>
</tr>
<tr>
<td></td>
<td>FEV$_1$ greater than or equal to 80% predicted</td>
</tr>
<tr>
<td></td>
<td>With or without chronic symptoms (cough, sputum production)</td>
</tr>
<tr>
<td>II: Moderate COPD</td>
<td>FEV$_1$/FVC \geq 70%</td>
</tr>
<tr>
<td></td>
<td>FEV$_1$ greater than or equal to 30% to \leq 80% predicted</td>
</tr>
<tr>
<td></td>
<td>IIa: FEV$_1$ greater than or equal to 50% to \leq 80% predicted</td>
</tr>
<tr>
<td></td>
<td>IIb: FEV$_1$ greater than or equal to 30% to \leq 50% predicted</td>
</tr>
<tr>
<td></td>
<td>With or without chronic symptoms (cough, sputum production, dyspnea)</td>
</tr>
<tr>
<td>III: Severe COPD</td>
<td>FEV$_1$/FVC \geq 70%</td>
</tr>
<tr>
<td></td>
<td>FEV$_1$ \leq 30% predicted or FEV$_1$ \leq 50% predicted plus respiratory failure or clinical signs of right heart failure</td>
</tr>
</tbody>
</table>

GOLD, Global Initiative for Chronic Obstructive Lung Disease; COPD, chronic obstructive pulmonary disease; FEV$_1$, forced expiratory volume in one second; FVC, forced vital capacity; respiratory failure, arterial partial pressure of oxygen \leq 60 mm Hg with or without arterial partial pressure of carbon dioxide greater than or equal to 50 mm Hg while breathing air at sea level.
High risk SAVR: Redo surgery after CABG

- Reported mortality: 6.4 to 17%
- IMA injury during sternal reentry
- Aortic clamping
- Myocardial protection
 - Wash out through functioning IMA
 - Retrograde CP in hypertrophic heart
 - Effects of DHCA?
- Management of progression of arteriosclerosis in native coronary arteries and grafts
 - Which grafts need to be replaced?
- “Prophylactic” AVR at initial CABG?
High risk SAVR: Redo after CABG

• Byrne, *Ann Thorac Surg* 2002;73:779
 • N=94, Age range 55 to 90 y
 • Aortic cannulation: 36, femoral cannulation: 58
 • CPB before sternotomy and DHCA (20° C)
 • Mortality: 6%, predominantly from cardiac causes
 • LIMA injury: 5, LCO: 12, PO IABP: 13, CVA: 10, Afib: 27, PM: 5, DSWI: 4

 • N=18, all BIMA, Mean age: 67y ± 6.4
 • Aortic cannulation: 12, Femoral cannulation: 6
 • DHCA: 3
 • Mortality: 0%
 • IABP: 1, CVA: 1
High risk SAVR: Redo after CABG

Patient Name: XXX

Date of Birth: 24th Aug 1927

Patient number: 13

Operation: Corevalve

<table>
<thead>
<tr>
<th>Patient Factors</th>
<th>Additive EuroSCORE</th>
<th>Logistic EuroSCORE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age 87yr</td>
<td>6</td>
<td>1,345 023429</td>
</tr>
<tr>
<td>Sex 1st</td>
<td>1</td>
<td>0,493 1341</td>
</tr>
<tr>
<td>Hlth pulmon.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extracardiac</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neurological</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Previous surgery</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seprn creatinine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active endocarditis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Critical po. state</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cardiac Factors</th>
<th>Additive EuroSCORE</th>
<th>Logistic EuroSCORE</th>
</tr>
</thead>
<tbody>
<tr>
<td>unstable angina</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LV dysfunc. 30-50</td>
<td></td>
<td>0,419 1643</td>
</tr>
<tr>
<td>LV dysfunc. poor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post myocardial int</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulmonary oedema</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operation Factors</th>
<th>Additive EuroSCORE</th>
<th>Logistic EuroSCORE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emergency</td>
<td>2</td>
<td>0,542 0364</td>
</tr>
</tbody>
</table>

Society of EuroSCORE

- EuroSCORE Risk Profile
- Contributing Centre: UZA

Downloaded from: https://euroscore.org

Score: 13

Risk: 40.43%
Frailty

- Fried criteria:
 - Unintentional weight loss, weakness, self reported exhaustion, slowness of gate speed and low physical activity
- Rockwood score, clinical frailty index etc.
- Simple measurement used to quantify frailty
 - 5 m Gate speed test:
 - Understanding the instructions
 - Be able to do it
 - Speed of steps
 - > 6 sec = undependent predictor of mortality
Eyeballing of the surgeon
Who should treat the patient with AS?

UZA TAVI Heart Team

Interventional cardiologists:
J. Bosmans and M. Claey's

Cardiac surgeon: I. Rodrigus

Echocardiographist: B. Paelinck

Anesthesiologist: D. Van Doninck

Radiologist: R. Salgado

Neurologist: P. Cras

Multidisciplinary approach
Treatment algorithm

- No reimbursement for TAVI in Belgium
- Degenerative, symptomatic AS: SAVR
- “Inoperable” and “high risk” patients: TAVI
 - Too high risk: COPD, frailty, Log EuroSCORE > 20%, too old,…
 - Porcelain aorta
 - Redo after CABG
 - Chest deformation
- If TAVI with Corevalve is considered:
 - Transfemoral access
 - Subclavian access
 - Direct aortic access
 - Transapical access for Edwards Sapian Valve
Contraindications for TAVI

<table>
<thead>
<tr>
<th>Absolute contraindications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absence of a 'heart team' and no cardiac surgery on the site</td>
</tr>
<tr>
<td>Appropriateness of TAVI, as an alternative to AVR, not confirmed by a 'heart team'</td>
</tr>
<tr>
<td>Clinical</td>
</tr>
<tr>
<td>Estimated life expectancy < 1 year</td>
</tr>
<tr>
<td>Improvement of quality of life by TAVI unlikely because of comorbidities</td>
</tr>
<tr>
<td>Severe primary associated disease of other valves with major contribution to the patient's symptoms, that can be treated only by surgery</td>
</tr>
<tr>
<td>Anatomical</td>
</tr>
<tr>
<td>Inadequate annulus size (< 18 mm², > 29 mm²)</td>
</tr>
<tr>
<td>Thrombus in the left ventricle</td>
</tr>
<tr>
<td>Active endocarditis</td>
</tr>
<tr>
<td>Elevated risk of coronary ostium obstruction (asymmetric valve calcification, short distance between annulus and coronary ostium, small aortic sinuses)</td>
</tr>
<tr>
<td>Plaques with mobile thrombi in the ascending aorta, or arch</td>
</tr>
<tr>
<td>For transfemoral/subclavian approach: inadequate vascular access (vessel size, calcification, tortuosity)</td>
</tr>
<tr>
<td>Relative contraindications</td>
</tr>
<tr>
<td>Bicuspid or non-calcified valves</td>
</tr>
<tr>
<td>Untreated coronary artery disease requiring revascularization</td>
</tr>
<tr>
<td>Haemodynamic instability</td>
</tr>
<tr>
<td>LV EF < 20%</td>
</tr>
<tr>
<td>For transapical approach: severe pulmonary disease, LV apex not accessible</td>
</tr>
</tbody>
</table>
TAVI experience UZA

- First experience with 2nd generation 21Fr Corevalve with CPB
- Experience with 3rd generation 18 Fr Corevalve since 2008
 - 132 patients
 - Transfemoral: 115
 - Subclavian access: 8
 - Direct aortic access: 4
 - Brachiocephalic trunc: 5
- No apical access
- All procedures in cathlab
- Cardiologist and cardiac surgeon
- No OR standby
 - Iliac repair in cathlab
 - Later operative iliac repair in OR
Access routes : TF and subclavian

• Conditions for transfemoral access
 • Diameter iliac vessels: > 6.5 mm
 • Minimal aortic calcifications
 • Minimal turtuosity
 • No previous peripheral bypass or stents

• Conditions for left subclavian access
 • Diameter subclavian artery: > 6.5 mm
 • No ostial stenosis, no turtuosity
 • No LIMA – LAD graft

If TF and/or subclavian access is not possible/safe: Direct aortic or truncal access
Access route: investigations for DA approach

• Normal TAVI workup
 • Clinical judgement
 • Coronary angiography
 • Echocardiography
 • Computed Tomography thorax, abdomen and pelvis with three dimensional reconstructions of the arterial vasculature and aortic root

• Extra:
 • CT scan: Length and diameter of ascending aorta and Brachiocephalic Trunc, relation to the sternum
 • Duplex carotid vessels
DA: Different desinfection and draping
How to perform DA access

- 5Fr sheath in Femoral artery
- graduated pigtail upto the non-coronary cusp for angiography of aortic root
- Skin incision: 5 to 8 cm
- **Partial upper ministernotomy**: J-shape to 2nd intercostal right with an oscillating saw
- Small sternal retractor
How to perform DA access: ministernotomy
How to perform DA access: dissection

- Dissection of substernal tissues
- Isolation of Innominate vein
- Dissection of brachiocephalic trunc (BT) and aorta upto the normal cannulation site
How to perform DA access: where to put the sheath?

• Access site:
 • With a short aorta and big BT (> 8 mm): BT
 • With long aorta and small BT: aorta
 • Be sure to have at least 6 cm distance to the aortic valve!!!

• BT clamping for 2 min
 • Foresight signal OK: BT
 • Foresight signal low: aorta

• Double pledgectted pursestring suture with Prolene 4/0 on BT or aorta

• Heparine administration (2cc, ACT > 180 sec)

• Introduction of 9 Fr sheath in aorta or BT
How to perform DA access: 18 Fr introduction

- Crossing AV with floppy wire
- Exchange for pigtail in ventricle
- Exchange for Amplatz super stiff wire in ventricle
- Introduction of 18Fr sheath for a few cm.
- Balloon valvuloplasty
- Corevalve deployment
How to perform DA access: finishing

- Removal 18 Fr sheath
- Tying pursestring
- Protamine administration
- Hemostasis
- Redon drain in substernal space
- Pleural drain if necessary
- Steelwire 2x
- Skin closure
Direct aortic access

- Frail patients, with vascular occlusive disease
- Previous CABG, with occlusion of native vessels and open grafts
- Chronic renal failure
- COPD
TAVI vs SAVR: LOWERING THE RISK OF SURGERY

- Preoperative optimalization
 - Investigate and treat anemia (groin hematoma)
 - Optimize pulmonary function (smoking cessation, IMT, Physiotherapy, aerosols, medrol…)
 - Exclude any infection (urinary !)

- Meticulous but expedious surgery by senior surgeons
 - ECC time < 90 min
 - Transfusion trigger on bypass: Het 24 %
 - Higher mean arterial pressure
 - Tight glucose control
 - Small body surface (BSA <1.8) and long CPB time (> 124 min) are 2 independent risk factors in early mortality for elderly patients undergoing primary isolated AVR.
TAVI vs. SAVR: LOWERING THE RISK OF SURGERY

• Post-op care
 • Short intubation time but supportive non-invasive ventilation if needed
 • Adequate filling pressure
 • Rythm control

• Principle
 • In younger patients, the largest possible prosthesis should be implanted to minimize residual gradient. In elderly patients, complex operations just to insert larger prostheses should be avoided.
TAVI vs. SAVR: PARTICIPATE IN THE HEART TEAM

- Discuss indications for treatment of AS
- Participate in the work up of patients
- Decide together what will be the best option
- Perform TAVI together: surgeon + cardiologist
CONCLUSION

• Older age alone is not a contraindication for surgery or an indication for TAVI
• Risk scores over- or underestimate the risk
• Alternative access routes have broadened the possibility of TAVI
• Valve-in-valve TAVI is becoming a reality.
• TAVI expansion in Belgium is hampered by restricted reimbursement
• Within 5 years, we will not perform AVR in octogenarians anymore