

The Snorkel Technique for Juxtarenal Aneurysms

Jason T. Lee, MD Director of Endovascular Surgery Program Director Associate Professor of Surgery Stanford University Medical Center

> IMAD Liege, Belgium October 5, 2012

*NO DISCLOSURES **OFF LABEL USE OF DEVICES

Basic Definitions

• Parallel graft alongside the main aortic endoprosthesis to maintain flow in a covered branch vessel.

Should patients with challenging anatomy be offered endovascular aneurysm repair?

Roy K. Greenberg, MD,^{a,b} Daniel Clair, MD,^a Sunita Srivastava, MD,^a Guru Bhandari, MS,^a Adrian Turc, MD,^a Jennifer Hampton, RN,^a Matt Popa, BS,^a Richard Green, MD,^a and Kenneth Ouriel, MD,^a *Cleveland, Ohio; and Rochester, NY*

Objectives: Treatment of abdominal aortic aneurysm is controversial in patients at high physiologic risk for ophigh anatomic risk for endovascular repair. We compared outcome in patients at high risk because of anato angulated neck), severe occlusive disease, or bilateral iliac aneurysms (group A) with outcome in patient (group B).

Material and methods: Patients at high anatomic risk who underwent treatment between October 1998 and with the Zenith endovascular graft (group A) were compared with patients at low anatomic risk enrolled in a multicenter trial (group B). Variables compared included overall mortality, need for secondary intervention must of and cleak, and changes in an anymetry are diameter. The y^2 test. Student these and proportions analyses

Self-expanding bare metal stents Effectively raise renal orifice a few mm

Ensure graft material in region of renals without compromising renal flow

◆ TECHNICAL NOTE

The Chimney Graft: A Technique for Preserving or Rescuing Aortic Branch Vessels in Stent-Graft Sealing Zones

Tomas Ohrlander, MD; Björn Sonesson, MD, PhD; Krasnodar Ivancev, MD, PhD; Timothy Resch, MD, PhD; Nuno Dias, MD, PhD; and Martin Malina, MD, PhD

Vascular Center Malmö-Lund, Malmö University Hospital, Malmö, Sweden.

6 juxtarenal cases (2 ruptured, 3 urgent)

Covered stents

Vascular Surgery

Valid alternative to fenestrated during emergency setting or unsuitable for FBE

Rescue procedure to salvage side branch

Early experience with the snorkel technique for juxtarenal aneurysms

Jason T. Lee, MD, Joshua I. Greenberg, MD, and Ronald L. Dalman, MD, Stan

Objective: The lack of readily available branched and fenestrated endovascular aneurysn created an opportunity for creative deployment of endograft components to treat juxtaren early experience with "snorkel" or "chimney" techniques in the endovascular management *Methods:* We retrospectively reviewed planned snorkel procedures for juxtarenal aneurysm 2009 to August 2011. Our standardized technique included axillary or brachial cutdown f stents and mostly percutaneous femoral access for the main body endograft.

Results: Fifty-six snorkel grafts were successfully placed in 28 consecutive patients (mean a aneurysms. Mean aneurysm size was 64.8 mm (range, 53-87 mm). The snorkel configurati zone from an unsuitable infrarenal neck for standard EVAR (median diameter, 33.5 mm; neck diameter of 24.5 mm and length of 18.0 mm. Five patients had unilateral renal sn snorkels, and six had celiac/superior mesenteric artery/renal combinations. Technical succ 98.2%, with loss of wire access leading to one renal stent deployment failure. Thirty-day m was readmitted 1 week postoperatively with pneumonia and died of sepsis; one patier hemispheric stroke. Other major complications included perinephric hematomas, 7.1%; piliac artery injury requiring endoconduit placement, 3.6%; and brachial plexus nerve injury

included self-limited arrhythmias (14.3%) and one non-Q-wave myocardial infarction (2.6%), with all accounting without coronary intervention. Mean follow-up was 10.7 months (range, 3-25 months), related causes at 3 months (89.3% survival). Postoperative imaging revealed one re at 3 months (98.2% overall primary patency). Seven (25%) early endoleaks were no tomography angiography: two type I, three type II, and two type III (25%), leading with bridging cuff placement (type III). The small type Ia endoleaks and other type scan. Mean sac regression at the latest follow-up was 7.3 mm. No aneurysm has er *Conclusions:* Early success with the snorkel technique for juxtarenal aneurysms has complex short-neck to no-neck EVAR. Although long-term follow-up is needed, thand lack of requirement for custom-built devices may make this approach more at stent grafts. (J Vasc Surg 2012;55:935-46.)

28 consecutive elective patients (2009-2011) IRB approved protocol 98% technical success 7.1% 30-day mortality 98% primary patency Survival 89% at one year

TECHNIQUE Hybrid Suite

Recommended Access

LOW BRACHIAL

HIGH BRACHIAL

AXILLARY

Single high brachial incision for double renal

7F 90cm Terumo sheaths

125 cm JB1 slip cath260mm glide wire260mm Rosen wire

7F 90cm Terumo sheaths into target branch origin125 cm JB1 slip cath260mm Rosen wire

Line up iCAST stents 6x59 or 7x59 on AP view

Check SMA position on lateral view

Deploy fabric below SMA

Cannulate gate and position molding balloon

Deploy iCAST stents Begin inflating molding balloon

Always deflate aortic balloon prior to deflating snorkel balloons

Results 2009-2012

- 70% male
- Age 75 years (60-88)
- AAA size 65.1mm (51-95)
- Most not suitable for open repair
 - Severe CAD (79%), COPD (46%), CHF (32%)
 - 100% ASA Class 3 or worse
- All elective cases
 - 79% juxtarenal AAAs
 - 12% previous Type I endoleaks
 - 9% with previous open repair

Results

- Pre-snorkel Neck
 - 32.6 mm diameter (18-45)
 - 1.5 mm length (0-5)
- "Post-snorkel" Neck
 - 25.1 mm diameter (18-32)
 - 19.4 mm length (10-30)

Pt	Main body	Snorkel configuration	Stent type ^a
1	32 Renu	Left renal	iCAST
2	28 Zenith	Bilateral renal	iCAST
3	32 Talent	Left renal	iCAST
4	32 Zenith	Bilateral renal	iCAST
5	36 Zenith	Left renal	iCAST
6	22 Zenith	Bilateral renal	iCAST
7	32 Zenith	Bilateral renal	iCAST
8	32 Zenith	Bilateral renal	iCAST
9	32 Zenith	Bilateral renal	iCAST
10	36 Zenith	Left renal	iCAST
11	26 Zenith	Bilateral renal	iCAST
12	28 Endurant	Bilateral renal	iCAST
13	28 Zenith	Right renal	Viabahn
14	32 Zenith	Bilateral renal	Viabahn
15	28 Zenith	Bilateral renal	iCAST
16	28 Zenith	Bilateral renal	Viabahn
17	34 TAG	Left renal/SMA/celiac	Viabahn
18	31 Excluder	Bilateral renal	Mixed
19	38 TX2	SMA/celiac	Viabahn
20	28 Zenith	Right renal/SMA	iCAST
21	36 Zenith	Bilateral renal	iCAST
22	36 Renu	Bilateral renal/SMA	Mixed
23	32 Zenith	Bilateral renal/SMA	Mixed
24	26 Zenith	Bilateral renal	Mixed
25	30 Zenith	Bilateral renal	iCAST
26	36 Zenith	Bilateral renal	iCAST
27	28 Endurant	Bilateral renal	ICAST
28	36 TX2	Bilateral renal/SMA/celiac	Mixed

Vascular Surgery

• Configuration (n=43)

- 28 (65%) bilateral renal
- 6 (14%) unilateral renal
- 9 (21%) combination with visceral
- Main body endograft
 - 26 (60%) Zenith
 - 5 Renu, 5 Endurant, 2
 TX2, 2 Excluder, 1 TAG,
 1 Talent, 1 Valiant
- 85/87 branches preserved in the 43 patients
 - 97.7% technical success

Outcomes

PERIOPERATIVE (n=43)		
Fluoroscopy time (min)	72.9	35-155
Contrast dose (mL)	180.0	66-400
Operative time (min)	236.9	110-515
Estimated blood loss (mL)	413	100-2000
Baseline creatinine (mg/dL)	1.1	0.8-1.6
Highest postop creatinine	1.4	0.9-5.8
Long-term followup creatinine	1.2	0.8-4.4
ICU length of stay (days)	0.8	0-6
Total length of stay (days)	3.4	2-10

Short-term Results (n=43)

- Complications
 - 2 peri-nephric hematomas (4.6%)
 - Transfusion post-op
 - No renal failure issues or need for HD
 - 4 acute renal failure with 1 requiring permanent HD (2.3%)
 - In double renal/visceral combination snorkels
 - 1 brachial plexus injury (2.3%), 1 iliac artery injury (2.3%)
 - 5 post-op arrhythmias (11.6%), 1 post op MI (resolved)
- 7.0% 30-d mortality (post-op pneumonia/ sepsis, CVA, paraplegia)
- 1 additional death at 3 months (unrelated MI)
- Follow-up time 16.5 months (1-36)
 - Survival 88.4%

Imaging Follow-Up (n=43)

• 96.5% overall primary patency

- 3 occluded renals
 - 1 at 3 month CT-A
 - 1 during unrelated abdominal operation 3m post-op

Cal

- 1 at 1 month f/u
- 98.8% secondary patency

Occluded L renal after abdominal operation with rising creatinine to 7.0

Vascular Surgery

1891

Re-angioplasty Re-stented

Vascular Surgery

AAA Follow-Up

Preop Aneurysm size (mm)	65.1	51-95
Postop Sac Size (mm)	58.0	32-93
Sac regression at latest f/u (mm)	7.3	-123
F/U time	16.5	1-36

- 8 early endoleaks (18.6%)
 - 3 type I (2 resolved, 1 required additional snorkel and cuff)
 - 3 type II (no sac enlargement, all have resolved at 6 months)
 - 2 type III (cuff placement at 6 mo, resolved on 1 year followup)
- 5 secondary interventions (11.6%)
 - 2 patients with occluded renals
 - 1 type I endoleak
 - 1 type III endoleak
 - 1 kinked renal

[H]

eo

0

飘

8/22/2012 Pre-intervention

[H]

e

P1 Z 1.7 2D 30% C 555 P Med Gen CF 61% 4050Hz WF 182Hz Med WF 182Hz Med

NUMBER OF STREET

RO

[H]

RC

8/22 Left R Snork 012 Post-

R(

SOLICITATION: BAA-NHLBI-CSB-HV-2013-02-JS

AMENDMENT: Three (3)

 TITLE:
 Vascular Interventions/Innovations and Therapeutic Advances (VITA) Stage-A (Concept to Proof of Principle) & Stage B (Proof of Principle to IND or IDE)

EFFECTIVE DATE: July 5, 2012

ISSUED BY:

National Heart, Lung, and Blood Institute, NIH Office of Acquisitions, CSB, DERA 6701 Rockledge Drive, Suite 6042, MSC 7902 Bethesda, Maryland 20892-7902

SS8. Chimney and Periscope Grafts: Mid-term Results in 77 Consecutive Patients with Complex Aortic Aneurysms

Mario Lachat¹, Felice Pecoraro², Thomas Pfammatter¹, Thomas Frauenfelder¹, Michael Glenck¹, Dominique Bettex¹, Dieter Mayer¹, Zoran Rancic¹, Frank J. Veith³ ¹Clinic for Cardiovascular Surgery, University Hospital Zurich, Zurich, Switzerland; ²University of Palermo, Palermo, Italy; ³New York University Medical Center, New York, NY.

OBJECTIVE require cov	77 patients treated from 2002-2011	ir orifices to treat
complex th	Mixed arch, thoraco, and juxtarenal	ber
2011. Anei were treate	 Mixed hybrid and all endovascular 	atients
sequentiall patients (1	61 patients with Ch-EVAR for juxtarenal	en P.
RESULTS: C	149 renovisceral ch-grafts	ral for the
ruptured ca patent. End	 Technical success 99.4% 	r Ib)
SD: 11.76).	– 30 d mortality 7%	ructions
	 F/u time 12 months only 3 occlusions (98%) 	
	 25% type II endoleaks, 8% type I all repaired 	

Current Literature

Table IV. Reported literature of snorkel/chimney endovascular aortic aneurysm repair for juxtarenal abdo aneurysms (*AAAs*)

Chimney/snorkel series for AAAs (first author)	No.	Urgent (%)	Snorkels per patient (mean)	Covered stents (%)	Type I endoleak (%)	6-month patency (%)	
Ohrlander ¹⁷	6	84	1.8	100	0	100	
Hiramoto ¹⁸	8	NA	1.0	12.5	12.5	100	
Allaqaband ¹⁹	2	0	1.0	50	0	100	
Donas ²⁰	15	33	1.0	100	6.7	94	
Bruen ²¹	21	5	1.7	100	4.8	94	
Coscas ²²	16	25	1.6	100	12.5	96	
Current series	28	0	2.0	100	7.1	98	

The chimney graft technique for preserving visceral vessels during endovascular treatment of aortic pathologies

Konstantinos G. Moulakakis, MD,^a Spyridon N. Myloi Anastasios Papapetrou, MD, PhD, MSc,^a John D. Kakisis and Christos D. Liapis, MD, PhD, FACS,^a Athens, Greece

Vascular Surgery

					20 Jan	Cillement
Author	CG n/directio	CG patency	Endoleak type I	Morbidity	mortality	fouow-up (months)
Our series (2011) ^{8,9}	3 proximal, caudal	100% (4/4)	1 type Ia endoleak; coiling and biological glue infusion via	None	0	8.6
Coscas et al (2011) ¹⁰	26 proximal	96.1% (25/26)	2 npe Ia; 1 coiling, 1 spontaneously resolved	3 renal failure, 1 stroke	12.5% (2/16)	10.7
Richardson et al (2011) ¹¹	1 prograal	100% (1/1)	—	None	0	5
Ricci et al (2011) ¹² Bruen et al (2011) ¹³	2 profimal 37 proximal	100% (2/2) 97.3% (36/37)	T type Ia; sportaneously resoved	None 5 renal function impairment, 4 access arterial thrombosis, 3 access site pseudoaneurysm, 3 ileus >4 days. 2 stroke	0 4.8% (1/21)	1 6
Schlosser et al (2011) ¹⁴	2 p oximal	100% (2/2)	Type Ia: the whole chimiey procedure was repeared	None	0	6
Ketelsen et al	l c udal	100% (1/1)		None	0	6
Donas et al (2010) ¹⁶	15 oroximal	93.3% (14/15)	-	1 myocardial infarction	0	6.7
Lachat et al (2010) ¹⁷	2 proximal	100% (4/4)	Low flow type Ib; sponuneously resolved	None	0	6
D'Utra et al (2010) ¹⁸	1 proximal	100% (1/1)	1 type ; Amp atzer occh der device	None	0	6
Rancic et al (2010) ¹⁹	4 candal	100% (4/4)	Low-f ow type Ib; spo itaneously	ND	0	6
Allaqaband et al (2010) ²⁰	3 pro imal	100% (3/3)		None	0	6
(2010) Hiramoto et al (2009) ⁶	1	100% (8/8)	3 type I; 1 Palmaz, 2 pontaneously r solved	ND	12.5% (1/8)	12.5
Ohrlander et al (2008) ⁵	11 proximal	100% (11/11)	_	1 renal failure, 1 asymptomatic compression of a renal CG	0	3.3
Larzon et al (2008) ²¹	15 proximat	100% (15/15)	type Ib; embolization of UA stepping FIA	1 myocardial infarction, 2 renal failure, 1 RP, 1 access fem, thrombosis	0	17
	126 proximal 8 caudal	97.8% (131/13) 13 14.0%	access tent, enromotis	4.1% (4/93)	9.0 ± 1.0

IS91

Summary

- Sn-EVAR technique provides acceptable short-term results for elective juxtarenal AAA repair in high risk patients as well as bailout or emergent circumstances
 - 97.7% technical success in branch preservation
 - 96.5% primary patency in follow-up
 - Acceptable morbidity and mortality at 1 year follow-up
 - Protection from aneurysm rupture
 - Secondary interventions are feasible

The \$1,000,000 Question

Conclusions

- Sn-EVAR is an excellent alternative to branched/ fenestrated systems until more readily available or we move towards off-the-shelf designs
 - Relies on skills/techniques/devices we are comfortable with
 - Patency and freedom from endoleak comparable to f-EVAR
 - Does not require customization or modification of devices
 - Potentially more flexible in configurations
 - Can be used in urgent cases and bailout scenarios

Thank you!

Ramit J. Column 182 Statelin Lagers

VASCULAR ANNUAL MEETING®

SAN FRANCISCO, CA

Ŧ

ALLANAVANAVANAVA