





## Genetic Studies of Abdominal Aortic Aneurysms

David J. Carey, PhD
Weis Center for Research
Geisinger Clinic

## Geisinger MyCode® Project

#### MyCode Project

CONTRIBUTE TO THE FUTURE OF HEALTHCARE

You can call us at

#### 1.886.910.6486

to ask for more information about MyCode.

Ceisinger Center For Health Research 100 North Academy Avenue Danville, PA 17822

WWW.GEISINGER.ORG

GEISINGER
CENTER FOR HEALTH RESEARCH
AEDERINING BOUNDARIES

24772-2/06-PRU/SF





We would like you to take part in MyCode, a project that will involve collection and storage of blood samples and health information from 200,000 patients.

Researchers will use your blood to study

your genes. This information will help researchers to understand how diseases develop and how we can improve detection and treatment of diseases.

#### WHAT WILL YOU BE ASKED TO DO?

- 1) Complete the MyCode consent form
- Give us permission to collect up to two tablespoons of your blood. We will only collect the MyCode blood sample when you are already having blood drawn that your doctor ordered.
- Choose whether your blood can be collected one time only, or whether your blood will be collected up to one time per year for as long as you allow it.
- Allow us to get information from your electronic health record (EHR) about your health history.



#### WHAT WE WILL DO WITH THE INFORMATION?

If blood samples and medical information are already available, researchers can study and understand what causes diseases including ways to detect diseases earlier and to improve treatments.

#### WHY WERE YOU ASKED TO TAKE PART?

We are asking anyone who is 18 years of age or older and is a Geisinger Clinic patient to take part.

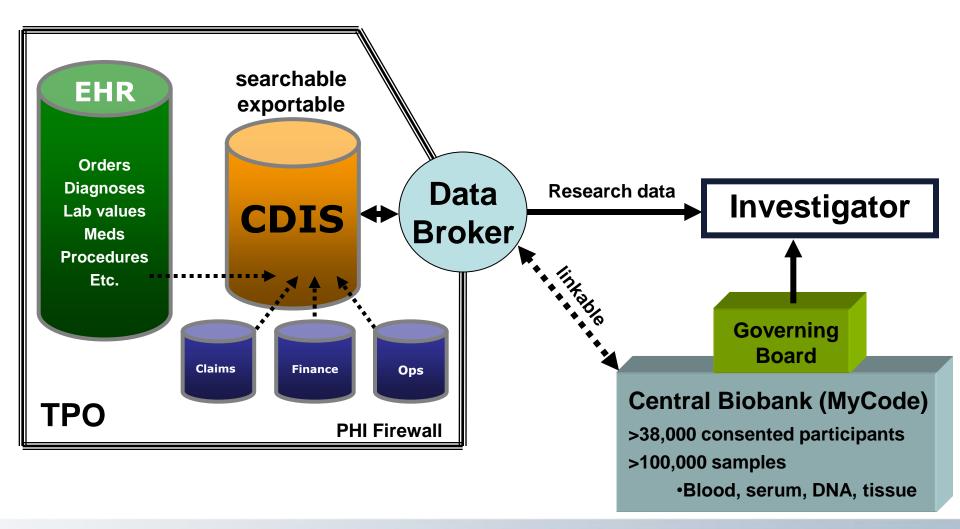
#### WHAT ARE THE BENEFITS/RISKS INVOLVED?

There are few benefits or risks to you. You will not receive money for your help. It will not cost you money to take part.

This research will not affect your health. The research may lead to discoveries to help doctors learn about diseases in general. We will take special care to protect your privacy.



#### WHAT IF IF YOU DON'T WANT TO BE INVOLVED?


Participation is completely voluntary. Your choice to take part or not take part in the project will not affect your health care.

#### FOR MORE INFORMATION

You can call us at 1.866.910.6486 to ask for more information about MyCode.



# Research Data Broker and Clinical Decision Intelligence System (CDIS) Data Warehouse



#### **AAA Genome Wide Association Study**

#### 922 AAA cases

- •725 males, 197 females
- 1,246 population controls from Geisinger MyCode Project•752 males, 494 females

Genotyped on Illumina OmniExpress Arrays (655,143 SNP probes)

Imputation on 1000 Genomes data set

~1,000 AAA cases and 9,000 controls genotyped on Illumina exome arrays

# Replication of *LRP1* Association with AAA (Bown et al., AJHG 2011)

- 6,228 cases
- 49,182 controls
- Association with a SNP in LRP1 gene:
  - $-P = 4.5 \times 10^{-10}$
  - -OR 1.15 [1.10-1.21]
  - -Risk Allele [C]
  - -Allele frequency 0.62
- Increase in LRP1 expression in CC homozygotes compared to TT homozygotes

## Replication of LRP1 Association with AAA

| Geisinger | AA<br>N<br>Freq. | GA<br>N<br>Freq. | GG<br>N<br>Freq. | MAF<br>HWE P-value |
|-----------|------------------|------------------|------------------|--------------------|
| Controls  | 181              | 714              | 696              | [A]=0.34           |
| N=1591    | 0.114            | 0.449            | 0.437            | P= 0.917           |
| Cases     | 59               | 336              | 365              | [A]=0.30           |
| N=760     | 0.078            | 0.442            | 0.480            | P = 0.127          |

Cochran- Armitage Trend Test

**Additive:** p-value = 0.0064

**Dominant:** p-value = 0.0068

Logistic Regression (Additive)

p-value = 0.0065

OR 1.20 [1.12 – 1.29]

# Whole exome/whole genome sequence analysis

#### Samples for WES

4 sib-pairs from previous linkage analysis

12 index cases from Geisinger with positive family history

- 5 females
- •7 males
- Mean age 61.6 years
- Mean AAA diameter 5.6 cm

'extreme phenotype?"

#### Samples for WGS

8 related cases from 3 families

# Criteria for Filtering Variants Identified by Next Generation Sequencing

- Within previously identified AAA linkage peaks
- •Frequency (rare > common)
- Predicted function
  - Predicted loss-of-function
  - Probably deleterious
  - Other non-synonymous
  - •UTR
  - non-coding
- Conservation (PhyloP score)
- Clustering between families
- Clustering within families
- Compatible with recessive genetic model

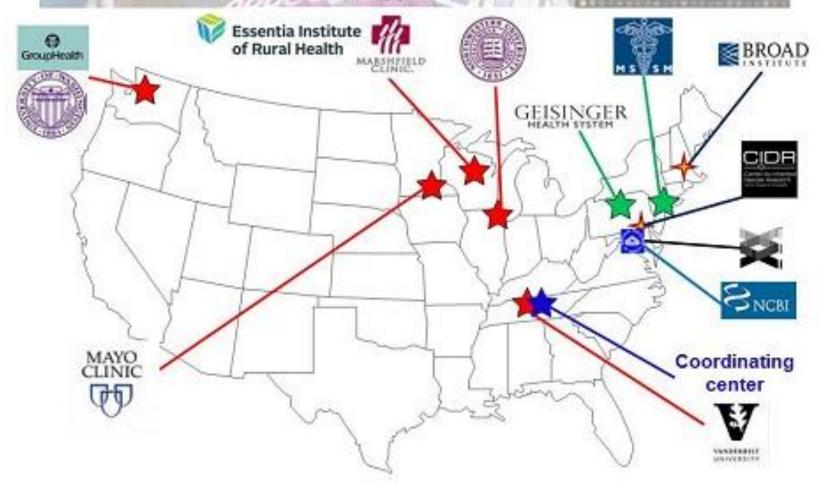
# Summary of Whole Exome Sequencing Variants

| Summary of Exome Sequence Data   |                                  |  |  |
|----------------------------------|----------------------------------|--|--|
| Total reads                      | 58 x 10 <sup>6</sup> /individual |  |  |
| Total variants                   | 658,287                          |  |  |
| Non-synonymous variants          | 22,501                           |  |  |
| Variants not in dbSNP            | 7,875 (35%)                      |  |  |
| Annotation score > 300           | 96                               |  |  |
| ∙in 19q13 linkage region         | 51 (53%)                         |  |  |
| •in other AAA linkage regions    | 28 (29%)                         |  |  |
| •novel variants                  | 83 (86%)                         |  |  |
| •splice variants                 | 30 (31%)                         |  |  |
| •conserved (PhyloP top quartile) | 86 (90%)                         |  |  |

# The eMERGE Network electronic Medical Records & Genomics

A consortium of biorepositories linked to electronic medical records data for conducting genomic studies

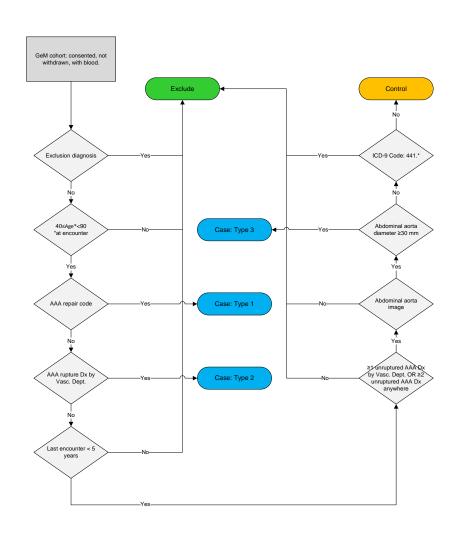
- **Main** Home Memb
- About Links
- Conta
- User Log in
- •"national consortium to develop, disseminate, and apply approaches to research that combine DNA biorepositories with electronic medical record systems for large-scale, high-throughput genetic research . . . . [use] EMR systems to investigate gene-disease relationships".
- Jointly funded by the National Human Genome Research Institute and the National Institute of General Medical Sciences of the NIH
- •eMERGE Phase 2: began July 1, 2011; increased emphasis on integrating genomic data into clinical practice






## The eMERGE Network

#### electronic Medical Records & Genomics


A consortium of biorepositories linked to electronic medical records data for conducting genomic studies



#### **eMERGE** Aims

- 1. Use existing biospecimens and EMR-generated phenotypes to identify new genetic variants or validate suspected variants associated with increased disease risk or treatment response for disorders with significant public health impact. (*Discovery*)
- 2. Develop and test approaches to incorporate genomic data into clinical care. (*Clinical Integration*)
- 3. Identify sociocultural concerns of patients residing in rural areas regarding genomic medicine research. Explore ethical, legal and social issues, including return of genetic findings to patients. (*ELSI*)

#### eMERGE AAA ePhenotyping Algorithm

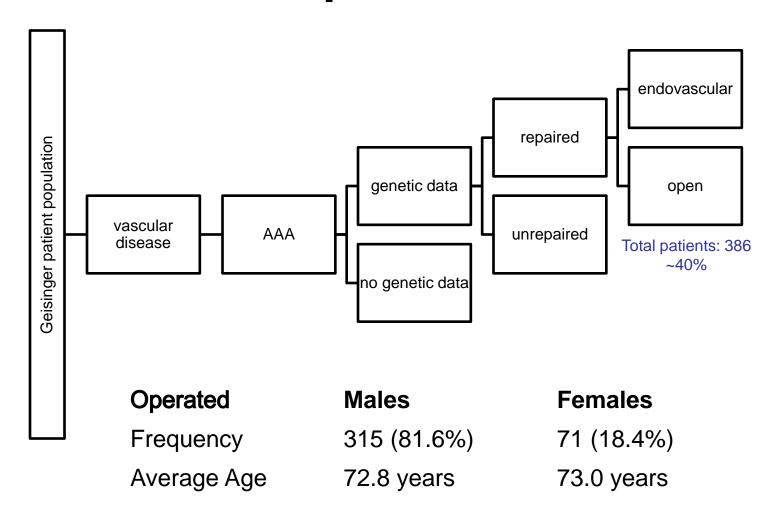


- Exportable
- High predictive value
  - PPV and NPV >95%

#### **eMERGE Samples for AAA GWAS**

Discovery\*

| <u>Source</u> | <u>cases</u> | <u>controls</u> |
|---------------|--------------|-----------------|
| Geisinger     | 724          | 1,231           |


Other sites 393 26,109

Replication

| <u>Source</u> | <u>cases</u> | <u>controls</u> |
|---------------|--------------|-----------------|
| Geisinger     | 100          | 2,000           |
| Other sites   | 1,236        | 9,600           |

<sup>\*</sup>all imputed to Oct 2011 1000 Genomes

# Risk Model of AAA Repair Complications



### **Adverse Outcomes Following AAA Repair**

- Myocardial Infarction
- Stroke
- Renal Failure
- Respiratory Failure

- Death for any reason within 0-30 days
- Death for any reason within 31-365 days

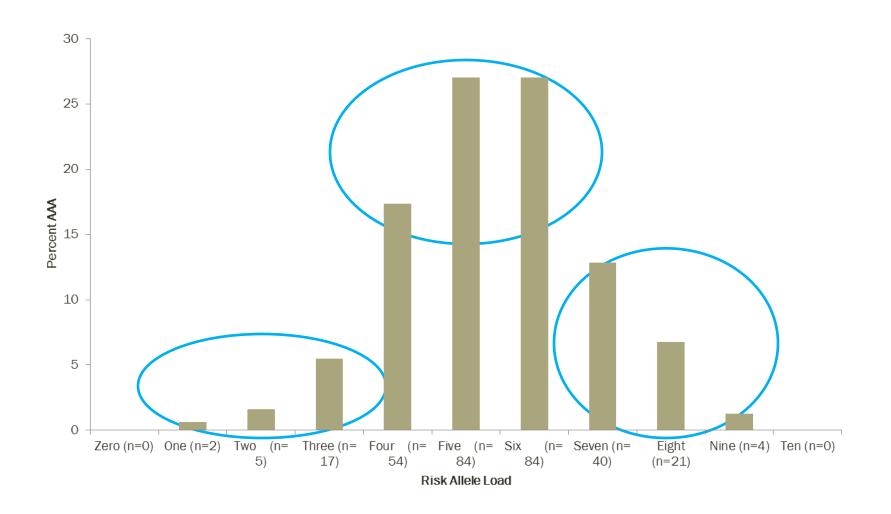
Patients with complete data = 318

Yes 47 14.8%

No 271 85.2%

## Univariate Analysis for Categorical Variables

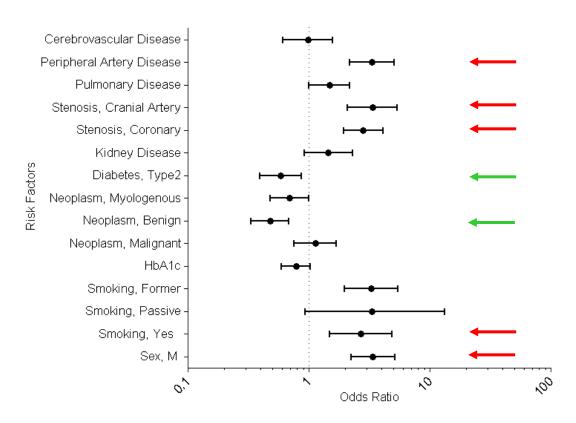
| Variable                 | No. of patients | P Value | Odds Ratio | 95% Confidence |
|--------------------------|-----------------|---------|------------|----------------|
| Sex (Female)             | 71 (18.4)       | 0.76    | 1.12       | 0.53 - 2.37    |
| Nitrate                  | 205 (53.2)      | 0.30    | 1.37       | 0.75 - 2.51    |
| Statin                   | 155 (40.3)      | 0.07    | 1.73       | 0.95-3.14      |
| Antihypertension Med     | 240 (62.3)      | 0.57    | 1.2        | 0.64-2.24      |
| Antiplatelet Med         | 169 (43.9)      | 0.35    | 1.33       | 0.73-2.40      |
| Ischemic Heart Disease   | 148 (38.4)      | 0.01    | 2.28       | 1.25-4.16      |
| Congestive Heart Failure | 76 (19.4)       | 0.23    | 1.52       | 0.76-3.02      |
| COPD                     | 99 (25.7)       | 0.03    | 1.95       | 1.05-3.64      |
| Diabetes Mellitus        | 78 (20.6)       | <.0001  | 2.58       | 1.36-4.90      |
| Hypertension             | 247 (64.1)      | 0.12    | 1.69       | 0.87-3.31      |
| Stroke                   | 54 (14.0)       | <.0001  | 13.4       | 6.78-26.4      |
| Pacemaker                | 12 (3.12)       | 0.05    | 3.55       | 1.03-12.3      |
| Kidney Disease           | 51 (13.2)       | 0.05    | 2.08       | 0.99-4.39      |
| Operation Type (EVAR)    | 225 (58.4)      | 0.25    | 1.45       | 0.78- 2.70     |


## Univariate Analysis for Continuous Variables

| Variable                 | P Value | Odds Ratio | 95% Confidence |
|--------------------------|---------|------------|----------------|
| Age                      | 0.17    | 1.03       | 0.99-1.07      |
| Creatinine Level         | 0.02    | 1.75       | 1.09- 2.82     |
| BUN Value                | 0.38    | 1.01       | 0.98- 1.04     |
| Serum Sodium             | 0.73    | 0.98       | 0.89- 1.09     |
| Serum Potassium          | 0.5     | 0.82       | 0.46-1.46      |
| Hemoglobin               | 0.8     | 1.02       | 0.85- 1.22     |
| White Blood Cell Count   | 0.2     | 0.94       | 0.87-1.03      |
| ВМІ                      | 0.02    | 1.06       | 1.01- 1.12     |
| Systolic Blood Pressure  | 0.03    | 0.98       | 0.97- 0.99     |
| Diastolic Blood Pressure | 0.01    | 0.97       | 0.94- 0.99     |
| Heart Rate               | 0.86    | 1.00       | 0.98-1.02      |
| Respiration              | 0.02    | 1.13       | 1.02- 1.26     |

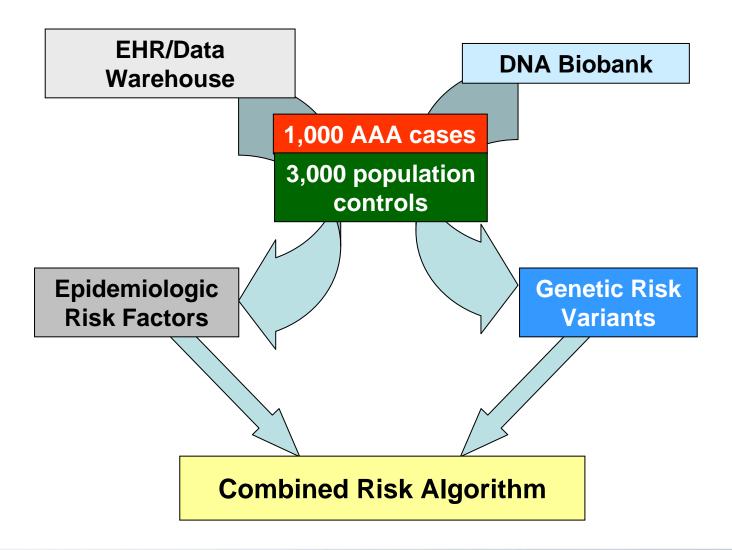
### **Genetic Risk Factors**

| Gene Symbol | SNP rs#    | Location | OR (95% CI)      | Р                     | Risk Allele |
|-------------|------------|----------|------------------|-----------------------|-------------|
| DAB2IP      | rs7025486  | 9q33     | 1.21 (1.14-1.28) | 4.6x10 <sup>-10</sup> | А           |
| CDKN2BAS    | rs10757278 | 9p21     | 1.31 (1.22-1.42) | 1.2x10 <sup>-12</sup> | G           |
| LRP1        | rs1466535  | 12q13    | 1.15 (1.10-1.21) | 4.5x10 <sup>-10</sup> | С           |
| CNTN3       | rs7635818  | 3p12.3   | 1.33 (1.10-1.21) | 0.0028                | С           |
| KCNK2       | rs12039875 | 1q41     | 1.18 (1.05-1.34) | 0.0072                | С           |

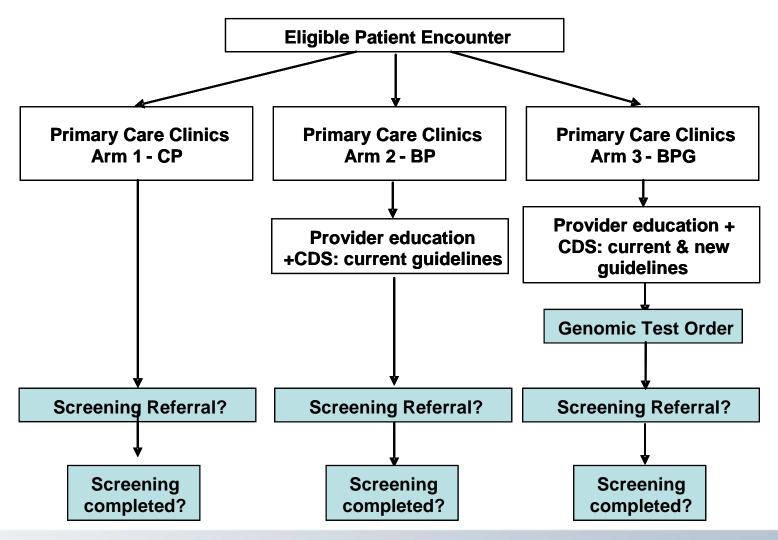

## Risk Allele Frequency Distribution



### Final Model


| Parameter         | Coefficient (β) | Odds Ratio       | P Value |
|-------------------|-----------------|------------------|---------|
| Sex               | 0.513           | 2.79 (1.03-7.55) | 0.043   |
| Diabetes Mellitus | 0.410           | 2.27 (0.91-5.69) | 0.081   |
| Creatinine Value  | 0.618           | 1.86 (0.91-3.80) | 0.092   |
| Respirations      | 0.214           | 1.24 (1.07-1.44) | 0.005   |
| Genetic Risk      | 0.868           | 2.38 (1.27-4.48) | 0.007   |
| Intercept (α)     | -7.957          |                  |         |

### Risk Factors for Abdominal Aortic Aneurysm Determined by Analysis of Geisinger EMR Data




Logistic regression analysis based on ~1,000 AAA cases and ~15,000 MyCode controls

## Predictive Disease Risk Modeling with EMR and Genomic Data



## Implementation of a Genomically-Informed Risk Tool for AAA Screening in Outpatient Clinics



### Acknowledgements

Weis Center for Research Geisinger Dept of Vascular Surgery

Helena Kiuvaniemi David Franklin

Gerard Tromp Jim Elmore

Diane Smelser Robert Garvin

Alicia Golden John Gray

Bob Erdman Matt Cindric

Kim Derr Evan Ryer

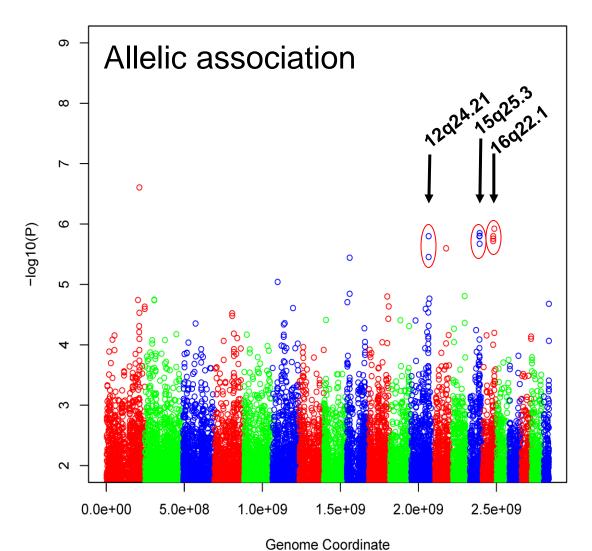
Kathy Masker Richard Yoon

Samantha Fetterolf Kameel Eckroth-Bernard

**William Bowen** 

#### **Funding**:

American Heart Association, NIH-NHGRI, PA CURE Fund, Geisinger Clinical Research Fund, NIH-NHLBI, Ben Franklin Technology Development Fund




#### **PA-CURE Grant – Translational Genomics**

## "Utility of Genomic Data to Guide Population Screening for Abdominal Aortic Aneurysms"

- 1. Create a novel AAA risk scoring tool that combines genetic variant and epidemiological data, using genotype and EMR-generated data from 1,000 AAA cases and 3,000 controls.
- 2. Prospectively validate the genomically-informed risk model in an outpatient population.
- 3. Develop and evaluate a clinical implementation plan for utilization of genomic data in Geisinger outpatient clinics.

#### **AAA Genome Wide Association Study**



logistic regression to control for age, sex, BMI, PAD and pulse pressure

## Variables for Operative Outcomes

| PRE-OP<br>VARIABLES | LAB WORK               | PAST MEDICAL HISTORY        | MEDICATIONS                 | 9p21<br>SNP |
|---------------------|------------------------|-----------------------------|-----------------------------|-------------|
| age                 | albumin                | chronic renal disease       | nitrates                    | AA          |
| sex                 | aPTT                   | chronic respiratory disease | statins                     | AG          |
| height              | blood urea nitrogen    | congestive heart failure    | ANTI-PLATELET               | GG          |
| weight              | creatinine             | diabetes mellitus           | aspirin                     |             |
| ВМІ                 | hemoglobin             | hypertension                | Plavix                      |             |
| heart rate          | potassium              | pacemaker                   | warfarin                    |             |
| respiratory rate    | PT/INR                 | peripheral vascular disease | ANTI-<br>HYPERTENSIVE       |             |
| systolic BP         | sodium                 | stroke                      | ACE inhibitors              |             |
| diastolic BP        | white blood cell count | tobacco use                 | beta blockers               |             |
| ASA class           |                        | ISCHEMIC HEART<br>DISEASE   | calcium channel<br>blockers |             |
| emergent surgery    |                        | angina                      | diuretics                   |             |
| repair year         |                        | angioplasty                 |                             |             |
|                     |                        | artery bypass               |                             |             |
|                     |                        | coronary artery disease     |                             |             |
|                     |                        | heart attack                |                             |             |

### Significant Variables for Operative Outcomes

| Sex (female)                  | 0.1082  | 1.242 (0.545, 2.831) | 0.6068 |
|-------------------------------|---------|----------------------|--------|
| ВМІ                           | 0.0605  | 1.062 (1.005, 1.123) | 0.0316 |
| Creatinine                    | 0.5735  | 1.774 (1.060, 2.970) | 0.0291 |
| Diastolic Blood Pressure      | -0.0349 | 0.966 (0.939, 0.993) | 0.0133 |
| Respirations                  | 0.1389  | 1.149 (1.029, 1.283) | 0.0139 |
| 9p21 (rs10757278) AA genotype | -0.5864 | 0.490 (0.162, 1.481) | 0.0713 |
| 9p21 (rs10757278) AG genotype | 0.4592  | 1.394 (0.628, 3.093) | 0.0496 |
| Intercept (a)                 | -4.5253 |                      |        |

Risk of Adverse Outcome= 
$$e^{\uparrow}(\alpha + [\beta \downarrow 1 \times sex] + [\beta \downarrow 2 \times BMI] + ...)$$