SURGICAL APPROACH OF VISCERAL, SPINAL CORD AND CEREBRAL PROTECTION

DR.MARC SCHEPENS AZ ST.JAN BRUGGE BELGIUM

ISCHEMIA OF END-ORGANS

PROTECTION OF END-ORGANS

HOW TO DO IT?

ARTERIAL INFLOW

FUNCTIONAL INTEGRITY

TOLERABLE ISCHEMIC TIMES

KIDNEYS	30 MINUTES
GUTS	> 120 MINUTES
LOWER LEGS	> 200 MINUTES
SPINAL CORD	?? COLLATERAL CIRCULATION30 MINUTES ?
BRAIN	3 MINUTES
HEART	?? COLLATERAL CIRCULATION Max 4 hours

SPINAL CORD PROTECTION

HYPOPERFUSION HYPOTENSION SPASM STEAL EDEMA THROMBOSIS REPERFUSION **INJURY**

MONRO-KELLY PRINCIPLE !!!!

INCIDENCE OF PARAPLEGIA/PARAPARESIS

IN THORACOABDOMINAL AORTIC SURGERY

-SUBSTANTIAL REDUCTION OVER LAST 10 YEARS -3 % TO 5 %

IN AORTIC ARCH SURGERY

-LESS THAN 1 % -NOT A PROBLEM

ADAMKIEWICZ A. DIE BLUTGEFÄSSE DES MENSCHLICHEN RŰCKENMARKEOBERFLÄCHE. AKAD WISS 1881;84 und 1882;85

CROSS-CLAMP TIME 30 MINUTES

SPINAL CORD FUNCTIONAL INTEGRITY

LEFT HEART BYPASS

CEREBROSPINAL FLUID DRAINAGE

(PERMISSIVE) HYPOTHERMIA

EVOKED POTENTIAL MONITORING

REIMPLANTATION OF CRITICAL INTERCOSTAL/LUMBAR ARTERIES

LEFT HEART BYPASS

REDUCTION OF NEUROLOGIC DEFICITS FROM 21 % TO 3 % DUE TO THE INTRODUCTION OF LEFT HEART BYPASS

Safi et al. Ann Thorac Surg 2005;80:2173-9

BASIC SET-UP

LEFT HEART BYPASS

VISCERAL PERFUSION

- NO HEPARINE

- OPTIMAL CONTROL OF HEMODYNAMICS
- -REWARMING
- SPINAL MONITORING
- VISCERAL PERFUSION
- REDUCTION OF ISCHEMIA VIA STAGED CLAMPING

LEFT ATRIUM

1. FRAGILE

- 2. RYTHM DISTURBANCES
- 3. AIR EMBOLISM

PERMISSIVE HYPOTHERMIA

EVOKED POTENTIAL MONITORING

brain

via posterior horn MEP

brain

via anterior horn

peripheral nerve

peripheral nerve

C 1

MEP

SEP

EP'S ALLOW FOR ADJUSTMENT OF OPERATIVE STRATEGY

INCREASE OF PROXIMAL BLOOD PRESSURE INCREASE OF DISTAL PERFUSION PRESSURE DRAIN CSF-FLUID

NORMAL SEP AND MEP HAVE A STRONG NEGATIVE PREDICTIVE VALUE

NO LOSS OF SIGNALS = NORMAL FUNCTIONING

REQUIRES SPECIAL TRAINED PERSONNEL

FALSE NEGATIVES AND FALSE POSITIVES

ALMOST ALL INHALED OR INTRAVENOUS ANESTHETICS MAY RESULT IN EP-CHANGES THAT ARE INDISTINGUISHABLE FROM REAL NEURAL ISCHEMIA

REIMPLANTATION OF CRITICAL ARTERIES

INTERCOSTAL / LUMBAR ARTERIES

DIRECT REIMPLANTATION INTO THE VASCULAR PROSTHESIS

AORTIC DISSECTION IS A PROTECTIVE FACTOR FOR SPINAL CORD DAMAGE

COSELLI ET AL. ANN THORAC SURG 1997;63:28-36 SCHEPENS ET AL. EUR J VASC ENDOVASC SURG 2009;37:640-5

PRESENCE OF AORTIC DISSECTION

0,40 ODDS RATIO

CEREBROSPINAL FLUID DRAINAGE

WHY ?

HOW ?

THE COMBINATION OF LEFT HEART BYPASS AND CSF-DRAINAGE IS PARTICULAR PROTECTIVE

Safi et al. Ann Thorac Surg 1998;66:1204-9 Schepens et al. Eur J Vasc Endovasc Surg 2009;37:640-5

CSF X MEP 0.28

0.28 ODDS RATIO

RISKS?

RISKS OF SPINAL FLUID DRAINAGE

Complication	n	% (n/1107)
CSF leak	7	0.64
Intracranial hemorrhage	5	0.45
Meningitis	2	0.2
Headache	2	0.2
Fractured catheter	1	0.1
Total	17	1.5

Estera et al. Ann Thorac Surg 2009;88:9-15

HOW LONG ?

3 consecutive days

< 10 mm Hg

Drainage - measurement - drainage - measurement

DELAYED SPINAL CORD DAMAGE

Delayed Spinal Cord Deficits After Thoracoabdominal Aortic Aneurysm Repair

Daniel R. Wong, MD, MPH, Joseph S. Coselli, MD, Karen Amerman, MS, CRNA, John Bozinovski, MD, Stacey A. Carter, BA, William K. Vaughn, PhD, and Scott A. LeMaire, MD

Background. Limited information is available about the treatment and outcomes of delayed paraplegia after thoracoabdominal aortic aneurysm (TAAA) repair. The objective of this study was to assess factors that precipitate and favorably affect delayed-onset neurologic deficits.

Methods. Over a 19-year period, 2,368 TAAA repairs were performed. Of the 93 patients (3.9%) who had postoperative paraplegia or paraparesis, 34 (37%) initially had intact neurologic function, but a delayed spinal cord deficit developed. We retrospectively examined clinical factors and events associated with development of the deficits, treatments used, and outcomes. Factors related to functional status were evaluated by comparing survivors who were ambulatory at discharge or transfer with those who were not.

Results. The delayed deficits occurred between 13 hours and 91 days postoperatively and were associated with a period of hypotension in 9 patients (26%). Two patients (6%) died in hospital. Of the 32 patients discharged or transferred, 13 (41%) were ambulatory. Poor functional outcomes were associated with female sex, intraoperative cerebrospinal fluid drainage, fewer intercostal arteries reattached, and administration of corticosteroids or osmotic diuretics. The actuarial survival rate at 2 years was 80%, 13% for the ambulatory patients and 32% 12% for the nonambulatory patients ($p_0.002$).

Conclusions. Although precipitating episodes of hypoperfusion were common, most cases of delayed paraplegia occurred without such events, suggesting that other factors may play an important role in the development of this complication. Ambulatory status at discharge significantly predicts midterm survival.

(Ann Thorac Surg 2007;83:1345-55)

DELAYED DEFICITS

13 HOURS - 91 DAYS

ARTERIAL HYPOTENSION

HYPOXEMIA

RYTHM DISTURBANCES (AF)

LOW HEMOGLOBINE

THERAPEUTIC MANEUVERS USED TO TREAT DELAYED-ONSET PARAPLEGIA

Vasopressor agents	21%
Corticosteroids	82%
PRBC transfusion	6%
Osmotic diuresis	76%
Intravenous naloxone	6%
CSF drainage	
Continuation with existing drain	9%
Reinsertion of drain	29%
Insertion of new drain	29%

THE COLLATERAL NETWORK CONCEPT Eva Griepp, Randall Griepp

Tex Heart Inst J 2010;37(6):672-674.

THE COLLATERAL NETWORK CONCEPT Eva Griepp, Randall Griepp

Tex Heart Inst J 2010;37(6):672-674.

Etz et al. Direct spinal cord perfusion pressure monitoring in extensive distal aortic aneurysm repair Ann Thorac Surg 2009;87:1764-1774.

CEREBRAL PROTECTION

DHCA: deep hypothermic circulatory arrest

ASCP: antegrade selective cerebral perfusion

RCP: retrograde cerebral perfusion

NEUROMONITORING

1.BILATERAL RADIAL ARTERY PRESSURE

2.ELECTRO-ENCEPHALOGRAPHY

3.BILATERAL TCD

4.NEAR INFRARED SPECTROSCOPY

ASCP

51

DHCA

No time limits	< 30 – 40 min.
Cannulae	Empty field
No blood	No blood
Glue: partial	Glue : circumferential
Risks of encircling vessels	Cooling and rewarming
Risk of dislodging atherosclerotic debris	Optimal protection of other organs

Antegrade Selective Cerebral Perfusion (ASCP)

Medtronic DLP

- 15 Fr.
- retrograde cardioplegia cannula
- balloon inflatable
- pressure line
- silicone
- armed

No time limits	< 30 – 40 min.
Cannulae	Empty field
No blood	No blood
Glue: partial	Glue : circumferential
Risks of encircling	Cooling and rewarming
vessels	
Risk of dislodging	Optimal protection of
atherosclerotic debris	other organs

BILATERAL TRANSCRANIAL DOPPLER MONITORING

Kinking Malpositioning Emboli

NEAR INFRARED SPECTROSCOPY

INVOS* Cerebral Oximeter

Cerebral Oximetry during Type A dissection (ASCP) repair

Sat%

1.00

BILATERAL RADIAL ARTERY PRESSURE MONITORING

1 8 28 11 10 -000 THREAT Hesse 8. 806 72.m 73.m art 1900 90/51 B Yentil mailig 18) 20 18/18 **MAHO** 課金の 82/54 1021 D Filetti Zvak stonaal 9 X a 3.7m 0.0 13 /min RR 13-14 11 100 **Distant** *C T3; 8 8 0.00 II 2.2 14-13 ш 霞-巾 13 -F < 0ú 0.00 Hutd Rect The local division in which the local division in the local divisi .

51

VISCERAL PROTECTION

GUTS, LIVER, SPLEEN, STOMACH, ...

RENAL PROTECTION

RENAL PROTECTION

TEAM WORK

ASSISTANT 1

ASSISTANT 2

ANESTHESIOLOGIST

SURGEON

PERFUSIONIST

SCRUB NURSE

THANK YOU FOR YOUR ATTENTION