LOW-DENSITY LIPOPROTEIN-RELATED RECEPTOR 5 (*LRP5*) GENE POLYMORPHISMS AND AAA GENETIC SUSCEPTIBILITY

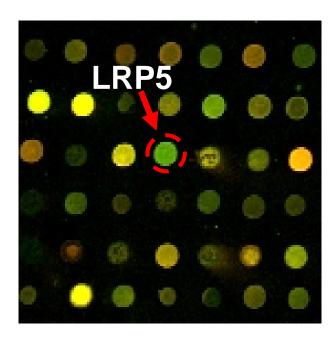
Betti Giusti

Department of Medical and Surgical Critical Care, University of Florence SOD Atherothrombotic Diseases, Careggi Hospital, Florence

3rd International Meeting on Aortic Diseases - IMAD Liege, Belgium October 4-6 2012

COMMUNICATION AGENDA

presentation of new data on the role of polymorphisms in the low density lipoprotein receptor-related protein 5 gene (*LRP5*) as genetic markers of abdominal aortic aneurysm (AAA)


brief summary of ongoing and published data obtained by our group in the same cohort of AAA patients and controls on the identification of other AAA genetic susceptibility factors, in order to point out a future challenge

Giusti B et al., Eur J Vasc Endovasc Surg 2009 91 genes differentially expressed **AAA** patients vs controls) 76 genes with increased expression 15 genes with decreased expression Gene expression profiling in whole peripheral blood

Gene Ontology in AAA patients

GO Term	N	n	Geni	Р
Oxigen Transport	9	4	HBA2(↑), HBD(↑), HBE1(↑), HBQ1(↑)	<0.0001
Positive regulation of protein kinase activity	3	2	MAP2K3(↑),PTPRC(↓)	0.029
lipid metabolic process	190	6	ACADS(\uparrow), CIDEA(\uparrow), LRP5(\downarrow), IGLL(\uparrow), ADIPOR1(\uparrow), HSD17B14(\uparrow)	0.049

Lipid metabolic process

LRP5 = low density lipoprotein receptor-related protein 5

Aging Wnts Frizzled W LR P5/6 B-caten in -cateni 3-caten in B-caten in -catenin Ob-genesis β-c ell mass/ins uli n 1 Ob-genesis Oc-genesis Glucose handling Oc-genesis Glucose handling Ob-apoptosis Ob-apoptosis Glucone ogenesis Gluconeogenesis Bone Mass LDL Cholesterol Bone Mass DL Cholesterol Atheroscle rosis Atherosclerosis Blood Pressure Blood Pressure Osteoporosis Metabolic Syndrome

Bone, lipid and glucose metabolism

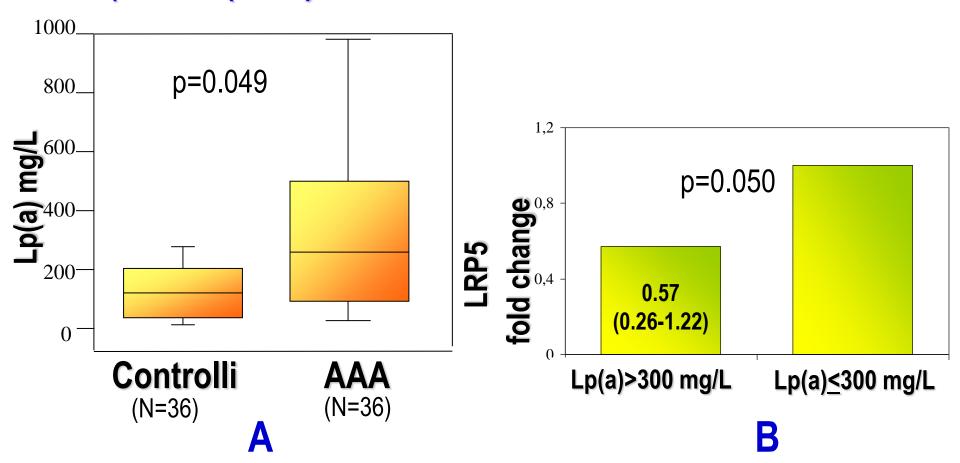
Giusti B et al., Eur J Vasc Endovasc Surg 2009

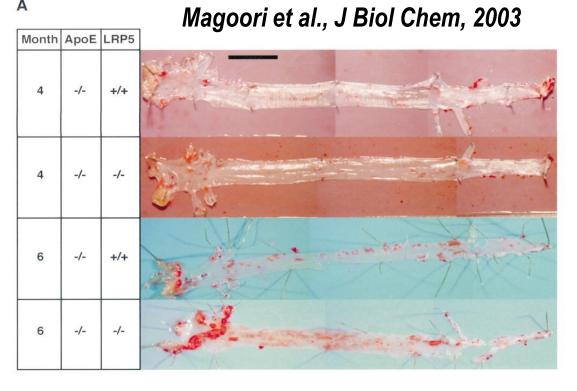
Forest plot of standardized mean difference of circulating lipoprotein(a) concentrations between cases with abdominal aortic aneurysm (AAA) and controls without AAA.

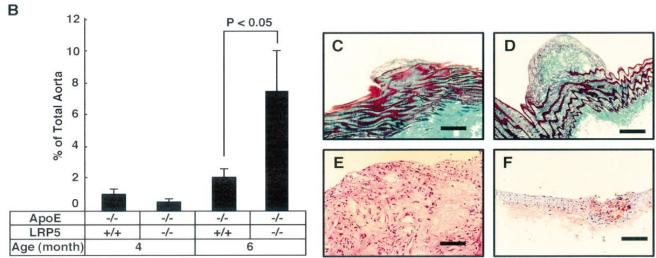
Study or subgroup	Mean	AAA S.D.	Total	Mean	Control S.D.	Total	Weight (%)	Std. mean difference IV, random, 95% CI	Std. mean difference IV, random, 95% Cl
Schillinger 2002	1131.7	1197.9	41	342.7	214.2	41	10.9	0.91 [0.45, 1.36]	
Simoni 1996	453.4	510.5	34	414.1	453.4	343	15.1	0.09 [-0.27, 0.44]	
Franks 1996	749.7	629.4	44	742.6	1360.6	244	16.7	0.01 [-0.32, 0.33]	
Jones 2007	29.9	50.8	425	17	50.8	230	27.6	0.25 [0.09, 0.41]	
Sofi 2005	728.3	1425.9	438	351.6	1425.9	438	29.6	0.26 [0.13, 0.40]	
Total (95% CI)			982			1296	100.0	0.26 [0.08, 0.44]	•
Heterogeneity: $\tau^2 = 0.0$	2; χ ² =11.1	12, df=4	(P=0.0)	3); I ² =64	4%			<u> </u>	-0.5 0 0.5 1
Test for overall effect:	Z=2.82 (P = 0.005)							AAA <control aaa="">control</control>

S.D., standard deviation; CI, confidence interval.

Takagi H et al. Interact CardioVasc Thorac Surg 2009;9:467-470


Published by European Association for Cardio-Thoracic Surgery. All rights reserved.


Relationship between LRP5 expression levels and Lp(a) levels in AAA patients


Giusti et al, Eur J Vasc Endovasc Surg 2009

A: Lp(a) levels in AAA patients and control subjects
B: LRP5 expression levels according to Lp(a) levels in AAA patients (n=36).

Atherosclerotic lesions in apoE and apoE;LRP5 double knockout mice

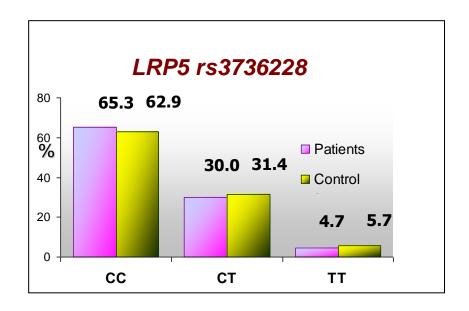
To evaluate the role of single nucleotide polymorphisms (SNPs) in LRP5 gene in determining the genetic susceptibility to abdominal aortic aneurysm (AAA)

Demographic and clinical characteristics of AAA patients and controls

	Controls (N=423)	AAA (N=423)	р
Age	72.0 (41-94)	73.5 (40-94)	ns
Sex (male) N (%)	366 (86.5)	376 (88.9)	ns
Smoking N (%)	267 (63.1)	366 (86.5)	<0.0001
Diabetes N (%)	49 (11.6)	41 (9.7)	ns
Hypertension N (%)	179 (42.3)	302 (71.4)	<0.0001
Dyslipidemia N (%)	50 (11.8)	195 (46.1)	<0.0001
COPD N (%)	66 (15.6)	311 (73.5)	<0.0001
CAD N (%)	107 (25.3)	163 (38.5)	<0.0001
CVD N (%)	38 (9.0)	111 (26.2)	<0.0001
POAD N (%)	67 (15.8)	118 (27.9)	<0.0001
Aortic diameter (mm)	19 (12-47)	50 (31-98)	<0.0001

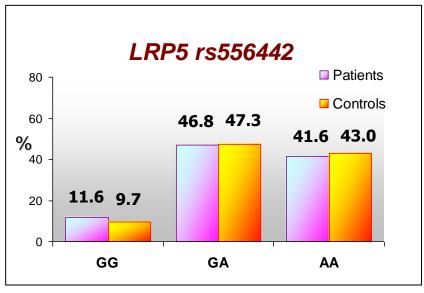
SNP selection

We studied 7 SNPs in *LRP5* gene (chromosome 11q13.4) according to literature data

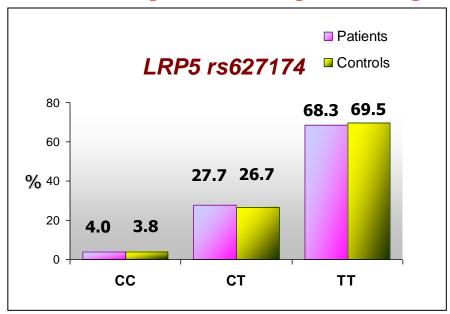

obesity	SNP ID	Nucleotide substitution	MAF*	Characterization
,	rs312016	T/C	T= 0.325	intron
obesity, BMI, bone mass and	rs4988300	T/G	T= 0.442	intron
geometry	rs3781590	C/T	T= 0.258	intron
bone density	, rs667126	C/T	C= 0.239	intron
osteoarthritis	rs3736228	C/T	T= 0.138	Non syn
bone density,		,		(Ala1330Val)
hypercholester olemia	rs627174	C/T	C= 0.177	intron
bone density	rs556442	A/G	G= 0.279	Syn° (Val1119Val)
bone density	Tagm	an® .		

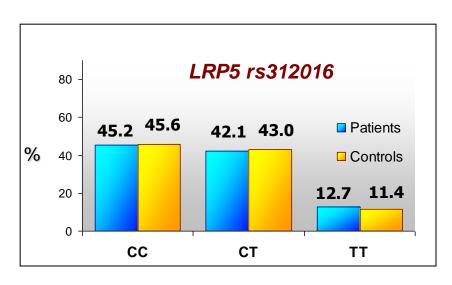
Taqman® technology

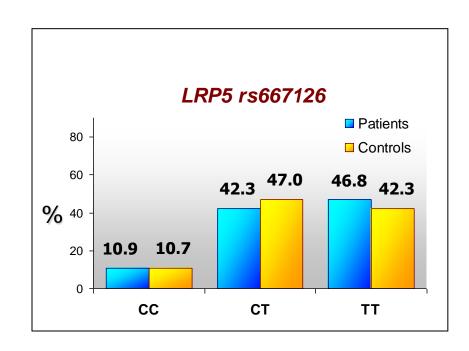
^{*}minor allele frequency;


[°] synonimous

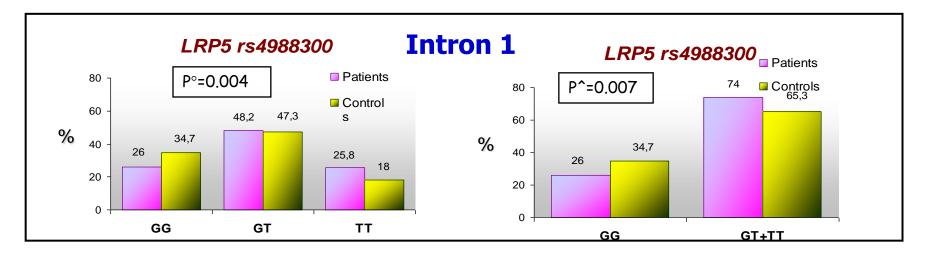
Genotype distribution of polymorphisms of *LRP5 gene* in AAA patients (n=423) and control subjects (n=423)

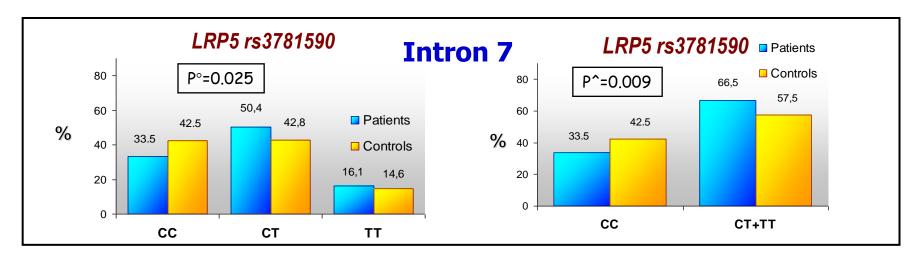



Galora S et al, submitted


Department of Medical and Surgical Critical Care, University of Florence, Italy

Genotype distribution of polymorphisms of *LRP5 gene* in AAA patients (n=423) and control subjects (n=423)

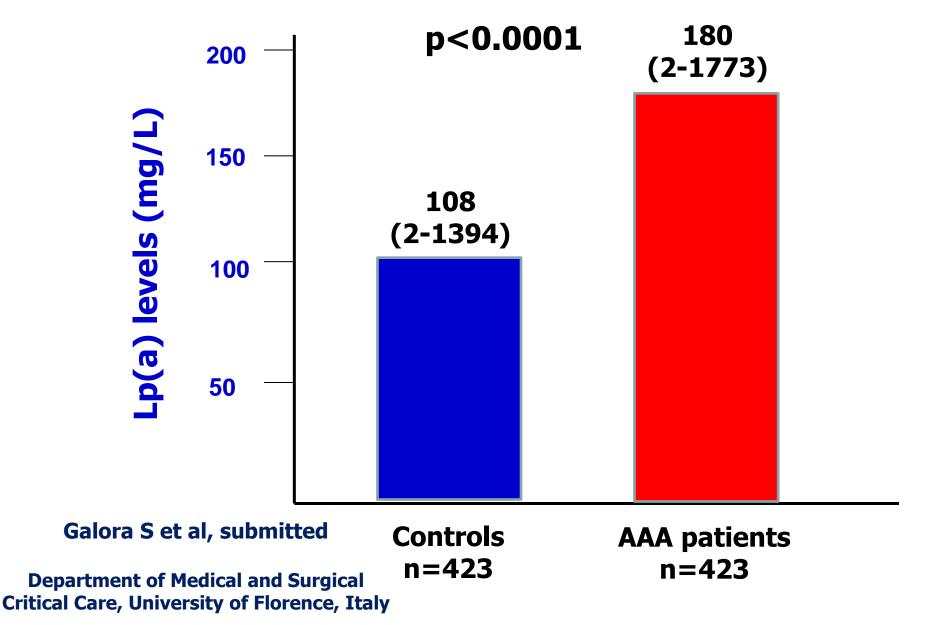



Galora S et al, submitted

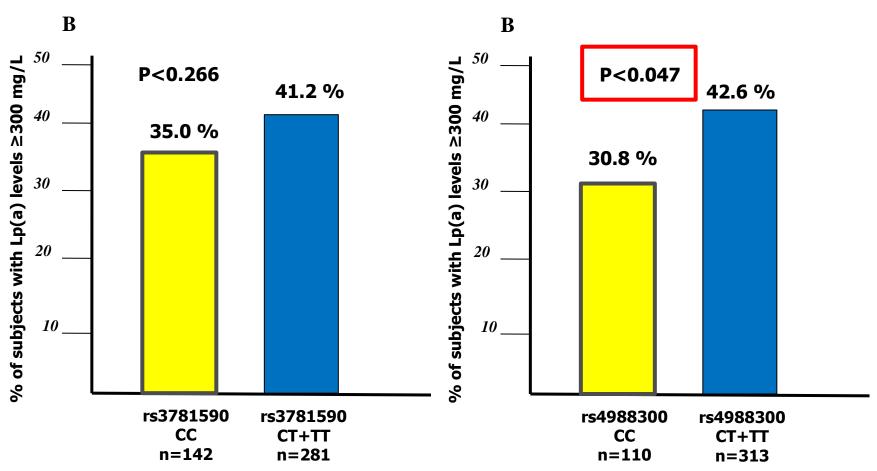
Department of Medical and Surgical Critical Care, University of Florence, Italy

Genotype distribution of polymorphisms of *LRP5 gene* in AAA patients (n=423) and control subjects (n=423)

Galora S et al, submitted


 p° = according to the additive model; p^{\wedge} = according to the dominant model

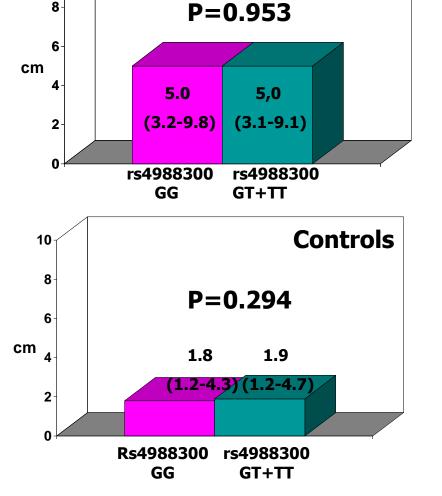
Odds ratio for the occurrence of AAA according to rs4988300 and rs3781580 LRP5 polymorphisms


Variables	Univariable Analysis	р	Multivariable Analysis*	р
LRP5 rs4988300 T allele	1.52 (1.12-2.05)	0.007	1.62 (1.02-2.56)	0.040
LRP5 rs3781590 T allele	1.47 (1.11-1.96)	0.008	1.83 (1.17-2.85)	0.008

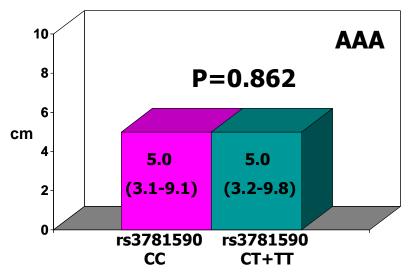
^{*} adjusted for age, gender, hypertension, diabetes mellitus, dyslipidemia, smoking habit, COPD (chronic obstructive pulmonary disease).

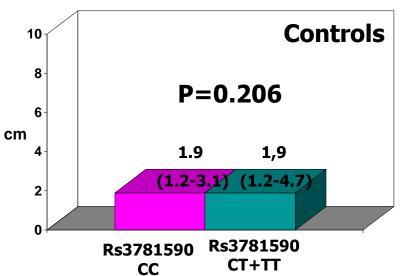
Lp(a) levels in controls and AAA patients

Lp(a) levels in carriers of the rs4988300 and rs3781590 polymorphisms


Galora S et al, submitted

Department of Medical and Surgical Critical Care, University of Florence, Italy


Effect of rs4988300 and rs3781590 *LRP5* polymorphisms on abdominal aortic diameters


Galora S et al, submitted

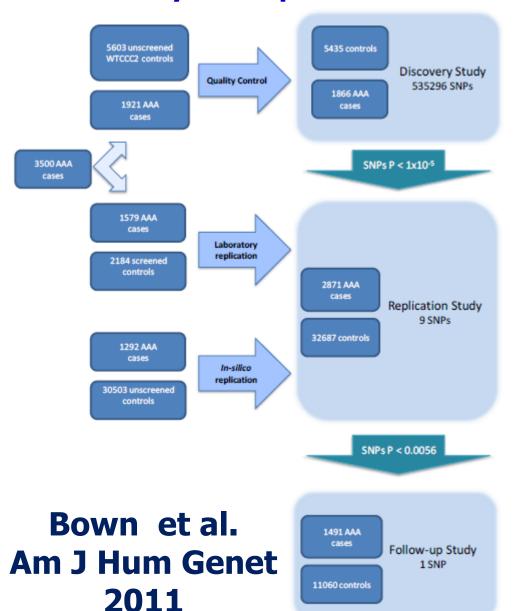
AAA

10

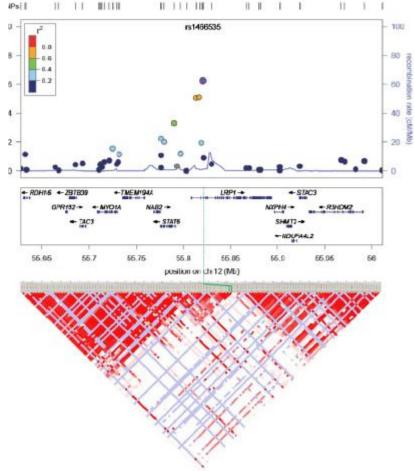
LRP5 AAA ASSOCIATION STUDY CONCLUSIONS

- ❖In conclusion, our data identified 2 LRP5 gene polymorphisms (rs4988300 and rs3781590) as independent genetic markers of AAA
- ❖ Present data suggest the need to confirm in larger populations the role of these two markers and of LRP5 gene in the aneurismal disease in order to improve the understanding of its pathophysiology and pathogenesis

COMMUNICATION AGENDA



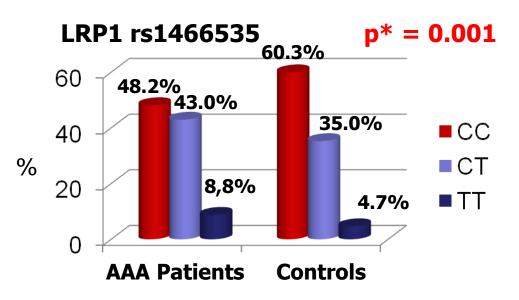
presentation of data on the role of polymorphisms in the low density lipoprotein receptor-related protein 5 gene (*LRP5*) as independent genetic markers of abdominal aortic aneurysm (AAA)

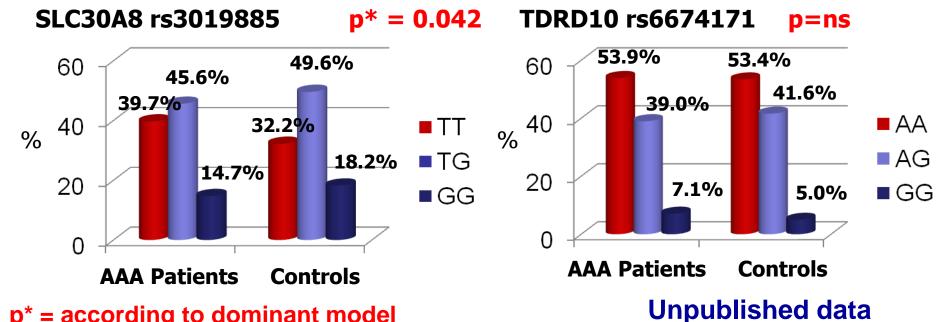


brief summary of ongoing and published data obtained by our group in the same cohort of AAA patients and controls on the identification of other AAA genetic susceptibility factors, in order to point out a future challenge

Genome wide association study and replication

Abdominal Aortic Aneurysm
Is Associated with a
Variant (rs1456535) in
Low-Density Lipoprotein
Receptor-Related Protein 1




Replication study data by Bown et al, 2011

Chr	Gene	SNP (alleles)	Risk allele		Discovery Study AAA, 5435 contr	ols)		ratory replication AAA, 2184 control:	5)		n-silico replicatio AA, 2791 control			ilico replication d IA, 27712 control		Combined Replication P value	Combined Discovery and replication P value
				FA/FC	OR (95% CI)	P	FA/FC	OR (95% CI)	P	FA/FC	OR (95% CI)	P	FA/FC	OR (95% CI)	P		
1	TDRD10	rs6674171 (A/G)	G	0.214/0.181	1.23 (1.12-1.35)	9.32x10 ⁻⁶	0.200/0.194	1.04 (0.93-1.16)	0.55	0.230/0.201	1.12 (1.03-1.22)	0.0082	0.192/0.177	1.20 (0.90-1.61)	0.22	0.037	1.15x10 ⁻⁵
2	AC016912.2 (processed transcript)	rs7565770 (A/C)	A	0.585/0.539	1.21 (1.12-1.31)	1.78x10 ⁻⁶	0.548/0.529	1.08 (0.98-1.19)	0.13	0.470/0.454	1.07 (0.96-1.20)	0.24	0.486/0.473	1.05 (0.93-1.19)	0.44	0.20	2.61x10 ⁻⁵
2	MYT1L	rs4853946 (A/G)	A	0.555/0.539	1.19 (1.10-1.28)	6.41x10 ⁻⁶	0.524/0.519	1.02 (0.92-1.12)	0.71	0.536/0.547	0.96 (1.06-0.87)	0.42	0.552/0.555	0.99 (1.01-0.97)	0.22	0.84	2.73x10 ⁻⁴
8	SLC30A8	rs3019885 (G/T)	т	0.510/0.449	1.27 (1.18-1.37)	1.24x10 ⁻¹⁰	0.462/0.422	1.08 (0.99-1.19)	0.09	0.577/0.553	1.1 (0.99-1.23)	0.086	0.539/0.572	0.87 (0.76-1.00)	0.045	0.010	2.32x10 ⁻¹⁰
9	C9orf92	rs7044238 (C/T)	С	0.375/0.335	1.19 (1.11-1.29)	9.60x10 ⁻⁶	0.345/0.351	0.98 (0.88-1.08)	0.64	0.669/0.656	1.06 (0.94-1.19)	0.32	0.644/0.629	1.07 (0.92-1.24)	0.37	0.52	4.26x10 ⁻⁴
12	LRP1	rs1466535 (C/T)	С	0.679/0.634	1.22 (1.13-1.32)	9.99x10 ⁻⁷	0.679/0.653	1.12 (1.02-1.23)	0.02	0.677/0.648	1.14 (1.02-1.28)	0.026	0.610/0.583	1.12 (0.98-1.28)	0.10	0.0042	2.86x10 ⁻⁹
13	GPC6	rs2892667 (A/G)	G	0.327/0.287	1.21 (1.12-1.31)	2.32x10 ⁻⁶	0.292/0.308	0.93 (0.84-1.03)	0.17	0.301/0.299	1.01 (0.92-1.11)	0.84	0.329/0.334	0.98 (1.09-0.88)	0.72	0.60	1.73x10 ⁻⁴
14	BMP4	rs2071047 (C/T)	С	0.628/0.587	1.19 (1.10-1.28)	6.05x10 ⁻⁶	0.591/0.593	0.99 (0.90-1.09)	0.65	0.618/0.633	0.93 (1.05-0.83)	0.23	0.642/0.632	1.06 (0.90-1.25)	0.48	0.57	3.51x10 ⁻⁴
19	ZNF665	rs11666426 (C/T)	С	0.442/0.400	1.19 (1.11-1.29)	5.73x10 ⁻⁶	0.404/0.413	0.96 (0.88-1.06)	0.41	0.615/0.610	1.03 (0.91-1.17)	0.64	0.655/0.644	1.09 (0.96-1.23)	0.36	0.47	3.36x10 ⁻⁴

Bown MJ et al., Am J Hum Genet 2011

Genotype distribution of polymorphisms of LRP1, SLC30A8 and TDRD10 genes in AAA patients (n=423) and control subjects (n=423)

p* = according to dominant model

Univariate logistic —— regression analysis

rs3019885 SLC30A8 = OR=0.73 (95% CI 0.54-0.98), p=0.042

rs1466535 LRP1 = OR=1.65 (95%CI 1.24-2.20), p=0.001

Multiple logistic	C
regression	l
analysis	

VARIABLES OR (95% CI) P LRP1 1.85 (1.2-2.84) 0.01 rs1466535 T Allele 0.01

Smoking habit

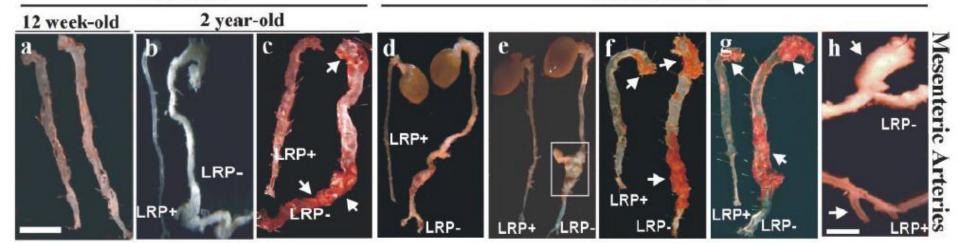
COPD

Adjusted for traditional cardiovascular risk factors and chronic obstructive pulmonary disease (COPD)

Age	0.99 (0.9/-1.01)	0.39
Gender	1.21 (0.58-2.53)	0.61
Hypertension	3.08 (1.99-4.76)	<0.0001
Dyslipidemia	4.86 (2.94-8.04)	<0.0001
Diabetes	0.67 (0.32-1.40)	0.29

0 00 (0 07 1 01)

2.91 (1.65-5.11)


13.01 (8.19-20.68)

< 0.0001

< 0.0001

Unpublished data

A Chow Fed Cholesterol Fed

Accelerated formation of atherosclerotic lesions and aortic dilatation and aneurysm in LDLR⁻; smooth muscle—specific LRP1⁻ mice.

Inactivation of LRP1 in vascular SMCs of mice causes PDGFR over-expression and abnormal activation of PDGFR signaling, resulting in disruption of the elastic layer, SMC proliferation, aneurysm formation, and marked susceptibility to cholesterol-induced atherosclerosis.

Bown et al. (2011), in human

T allele is associated with a reduced LRP1 gene expression, by altering a SREBP-1 binding site than influencing LRP1 enhancer activity at the locus.

Table 2. Effect of rs1466535 Genotype on LRP1 Expression

Tissue	Number	CC versus TT Fold-Change (95% CI)
Aortic adventitia	133	1.19 (1.04–1.36)
Aortic intima media	138	1.17 (0.96–1.42)
Mammary artery intima media	89	1.24 (0.99–1.56)
Liver	212	0.99 (0.91-1.07)

Polymorphisms of genes involved in extracellular matrix remodeling and abdominal aortic aneurysm

Table I. Polymorphisms investigated

Gene symbol and chromosome position	Ensemble gene ID	dbSNP ID	Common polymorphism name	Position in gene region
MMP1 11q22-q23	ENSG00000196611	rs1799750	-1607G/GG	5' near gene
MMP2 16q13-q21	ENSG00000087245	rs2285053 rs243865 rs243866	−735C/T −1306C/T −1575G/A	5' near gene 5' near gene 5' near gene
MMP3 11q22.3	ENSG00000149968	rs3025058	5A/6A	5' near gene
MMP9 20q12-q13	ENSG00000100985	rs3918242	-1562C/T	5' near gene
MMP10 11q22.3	ENSG00000166670	rs486055	A180G Lys53Arg	exon 2
MMP12 11q22.2-11q22.3	ENSG00000110347	rs2276109	-82A/G	5' near gene
MMP13 11q22.3	ENSG00000137745	rs2252070	-77A/G	5' near gene
TIMP1 Xp11.3-p11.23	ENSG00000102265	rs4898	C434T Phe124Phe	exon 5
TIMP3 22q12.1-q13.2	ENSG00000100234	rs9619311	−1296T/C	5' near gene
ELN 7q11.1-q21.1	ENSG00000049540	rs2071307	G1355A Ser422Gly	exon 20

ID, Identification number.

Saracini C et al., J Vasc Surg 2012

Table III. Genotype distribution and allele frequency of the 12 investigated polymorphisms in AAA patients and control subjects

		Genotypes (%)		Minor allele		Genotypes (%)		Minor allele		
SNP	Pa	itients (n = 423	3)	frequency	Contr	ol subjects (n =	= 423)	frequency	P	
MMP1 rs1799750	AA(26.0)	AG(49.1)	GG(24.9)	G = .495	AA(24.8)	AG(51.3)	GG(23.8)	G = .495	1	
MMP2 rs2285053 rs243865	CC(71.2) CC(64.9)	CT(27.2) CT(31.0)	TT(1.6) TT(4.1)	T = .152 T = .196	CC(74.6) CC(56.3)	CT(23.1) CT(37.6)	TT(2.2) TT(6.1)	T = .138 T = .249	.524° .023°	~
rs243866 MMP3 rs3025058	GG(67.2) 5A/5A	GA(29.5) 5A/6A	AA(3.3) 6A/6A	A = 0.180 $6A = 0.462$	GG(61.8) 5A/5A	GA(33.4) 5A/6A	AA(4.7) 6A/6A	A = 0.215 $6A = 0.572$.296°	~
MMP9 rs3918242	(26.5) GG(73.9)	(54.7) GA(23.1)	(18.8) AA(3.0)	A = 0.146	(21.9) GG(72.5)	(50.8) GA(23.9)	(27.3) AA(3.6)	A = 0.156	.159ª	
MMP10 rs486055	CC(95.4)	CT(4.3)	TT(0.3)	T = .024	CC(94.9)	CT(4.8)	TT(0.3)		1	
MMP-12 rs2276109	AA(78.1)	AG(19.1)	GG(2.9)	G = .124	AA(76.9)	AG(21.1)	GG(1.9)	G = .125	.719 ^b	
MMP-13 rs2252070 TIMP1	AA(34.8)	AG(43.9)	GG(21.4)	G = .433	AA(40.0)	AG(45.9)	GG(14.1)	G = .371	.023 ^b	←
rs4898 TIMP3	TT(100.0)	CT(0.0)	CC(0.0)	C = .000	TT(96.8)	CT(3.2)	CC(0.0)	C = .016	<.0001a	←
rs9619311 ELN	TT(41.9)	CT(44.4)	CC(13.7)	C = .359	TT(46.1)	CT(44.1)	CC(9.8)	C = .318	.264b	
rs2071307	GG(39.9)	GA(43.8)	AA(16.3)	A = 0.382	GG(31.3)	GA(51.8)	AA(16.9)	A = 0.428	.022 ^c	←

AAA, Abdominal aortic aneurysm; SNP, single nucleotide polymorphism.

Saracini C et al., J Vasc Surg 2012

P values were adjusted by using the false discovery rate (FDR) multiple-testing correction.

 $^{^{}a}P = according to the additive model.$

 $^{{}^{}b}P$ = according to the recessive model.

 $^{^{}c}P = according to the dominant model$

Odds ratio for the occurrence of AAA according to rs243865 MMP2, rs3025058 MMP3, rs2252070 MMP13, and rs2071307 ELN polymorphisms

Saracini C et al., J Vasc Surg 2012

Table IV. Odds ratios for the occurrence of AAA according to rs243865 MMP2, rs3025058 MMP3, rs2252070 MMP13, and rs2071307 ELN polymorphisms

Variables	Univariate analysis	P	Multivariate analysis ^a	P
MMP2 rs243865 T allele	0.7 (0.52-0.93)	.013	0.55 (0.34-0.85)	.007
MMP3 rs3025058 5A allele	1.61 (1.13-2.33)	.007	1.82 (1.04-3.12)	.034
MMP13 rs2252070 GG genotype	1.65 (1.11-2.46)	.013	2.14 (1.18-3.86)	.012
ELN rs2071307 A allele	0.69 (0.51-0.92)	.012	0.64 (0.41-0.99)	.046

AAA, Abdominal aortic aneurysm; COPD, chronic obstructive pulmonary disease.

Adjusted for age, gender, hypertension, diabetes mellitus, dyslipidemia, smoking habit, and chronic obstructive pulmonary disease (COPD)

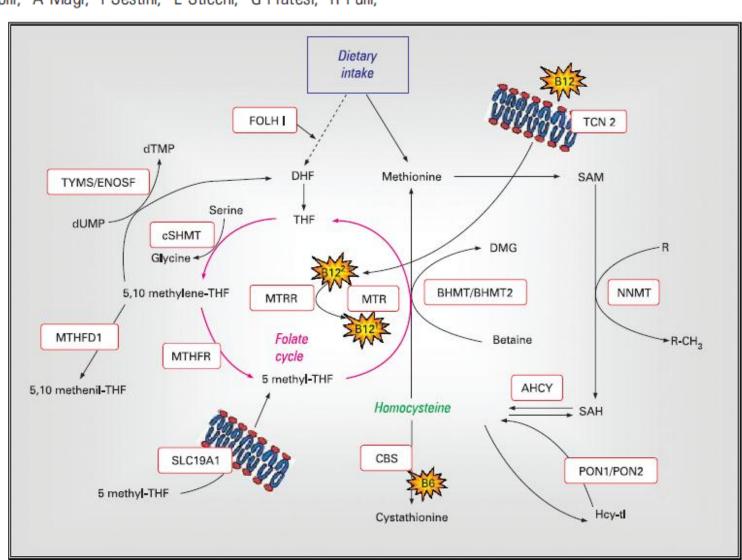
aAdjusted for age, gender, hypertension, diabetes mellitus, dyslipidemia, smoking habit, and COPD.

Genetic analysis of 56 polymorphisms in 17 genes involved in methionine metabolism in patients with abdominal aortic aneurysm

J Med Genet 2008

B Giusti, 1 C Saracini, 1 P Bolli, 2 A Magi, 1 I Sestini, 1 E Sticchi, 1 G Pratesi, 3 R Pulli, 4

C Pratesi,4 R Abbate1


Regulation of:

Homocysteine levels

DNA methylation

Genetic stability

Gene expression

Odds ratio for the occurrence of AAA according to rs8003379 MTHFD and rs326118 MTRR polymorphisms

Giusti et al., J Med Genet 2008

Variables	Multivariable Analysis*	P
MTHFD rs8003379 T allele	0.41 (0.26-0.65)	<0.0001
MTRR rs326118 T allele	0.47 (0.29-0.77)	0.003

^{*} adjusted for age, gender, hypertension, diabetes mellitus, dyslipidemia, smoking habit, COPD (chronic pulmonary obstructive disease).

Combination of genetic risk conditions

Polymorphisms		OR (95%CI)	р
rs4988300 LRP5	(T allele)	1.62 (1.02-2.56)	0.040
rs3781590 LRP5	(T allele)	1.83 (1.17-2.85)	0.008
rs1466535 LRP1	(T allele)	1.85 (1.20-2.84)	0.010
rs243865 MMP2	(CC genotype)	1.81 (1.17-2.94)	0.007
rs3025058 MMP3	(5A allele)	1.82 (1.04-3.12)	0.034
rs2252070 MMP13	(GG genotype)	2.14 (1.18-3.86)	0.012
rs2071307 ELN	(GG genotype)	1.56 (1.01-2.44)	0.046
rs8003379 MTHFD1	(GG genotype)	2.44 (1.54-3.85)	<0.0001
rs326118 MTRR	(GG genotype)	2.13 (1.30-3.45)	0.003

The condition of having ≥ 6 genetic risk factors determines a risk of AAA:

OR=6.32 (3.46-11.52), p<0.00000001

adjusted for age, gender, hypertension, diabetes mellitus, dyslipidemia, smoking habit, COPD (chronic pulmonary obstructive disease)

In conclusion, our data suggest the need

- to confirm in larger and well characterized populations the 9 reported associations
- * to concentrate our effort in studying the role of these markers and other markers in the same genes as well as in other genes emerged from "candidate gene studies" or "genome wide association studies (GWAS)" or "massive parallel sequencing" in the aneurismal disease in order to improve the understanding of its pathophysiology and pathogenesis
- The identification of numerous genetic susceptibility factors is fundamental to design and develop gene-based clinical studies in the future to validate diagnostic or prognostic scores based on clinical, imaging, biochemical, and multiple genetic information to be applied in the everyday clinical practice

Department of Medical and Surgical Critical Care, University of Florence — Atherothrombotic Diseases Unit, Careggi Hospital, Florence, Italy

Silvia Galora, BS Claudia Saracini, BS, PhD Anna Maria Palombella, BS Elena Sticchi, BS, PhD Alberto Magi, Eng., PhD Gian Franco Gensini, MD Rosanna Abbate, MD

Department of Vascular Surgery, University of Florence, Florence, Italy

Raffaele Pulli, MD Carlo Pratesi, MD

Vascular Surgery Unit, Department of Surgery, University of Rome "Tor Vergata", Rome, Italy
Giovanni Pratesi, MD