

3rd International Meeting on Aortic Diseases

New insights into an old problem CHU Liège, FAD, APF

Biomarkers of TAAD and an Effective Medical Therapy for

Thoracic Aneurysms: Statins

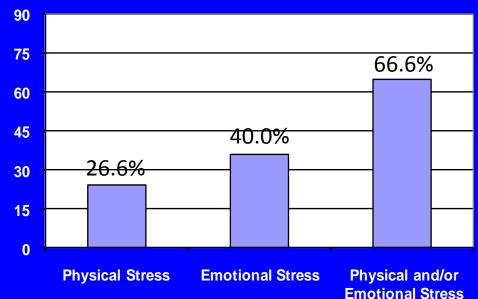
John A. Elefteriades, MD

William W. L. Glenn Professor of Cardiothoracic Surgery Director, Aortic Institute at Yale-New Haven Yale University School of Medicine New Haven, CT "Biomarker": A biologic indicator of a disease process--often, but not always a blood-based test.

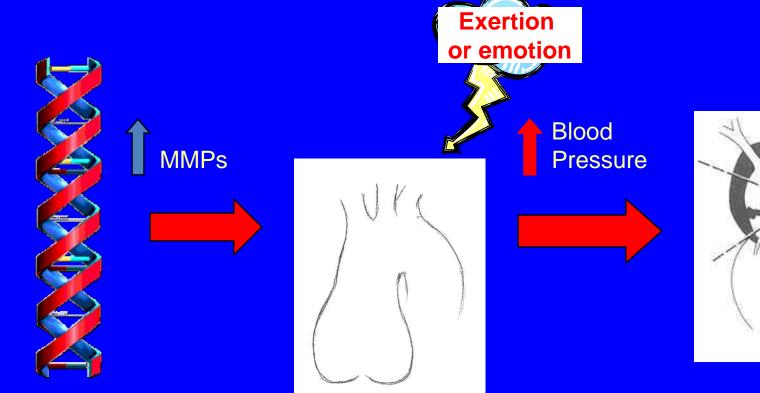
THORACIC AORTIC ANEURYSM

- Asymptomatic Disease
- Lethal First Presentation

Healthy young men with only moderately enlarged aortas-> Aortic dissection while weightlifting



Elefteriades JA, et al. JAMA. Dec 5, 2003.


Inciting Events for Acute Aortic Dissection

65/90 (66.6%) Reported Physical/Emotional inciting events:

- 24/90 (26.6%) Physical
- 36/90 (40.0%)
 Emotional

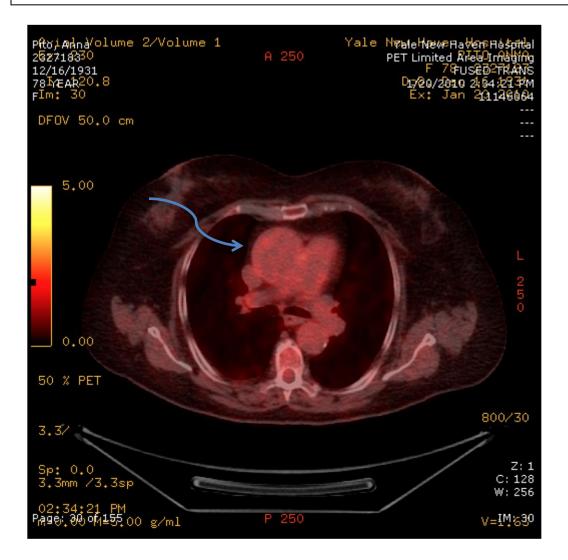
Why does dissection pick one point in time to occur?

Genetic Predisposition

Aortic Dilatation

Acute Aortic Dissection

In Search of Blood Tests for Thoracic Aortic Diseases

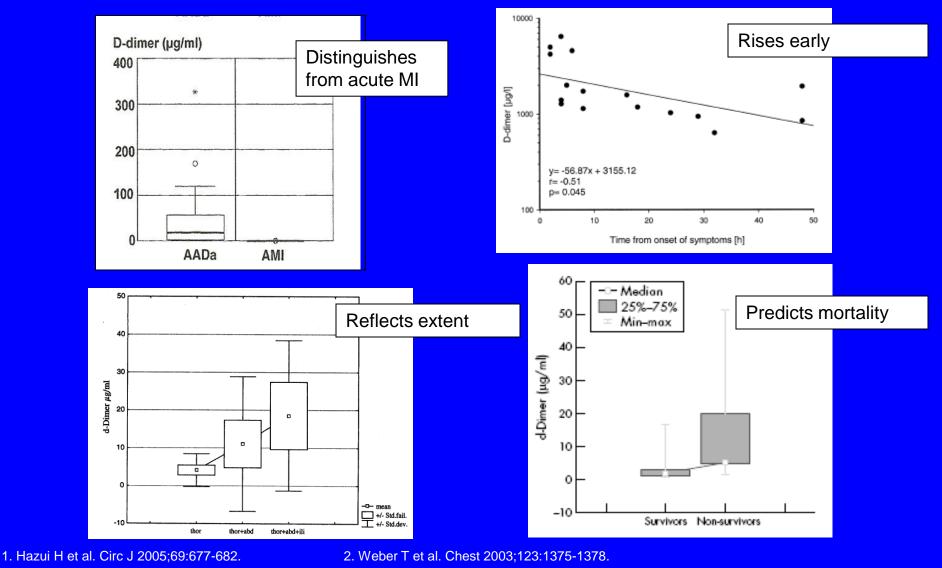

Santi Trimarchi, MD, Giuseppe Sangiorgi, MD, Xiangpeng Sang, BS, Vincenzo Rampoldi, MD, Toru Suzuki, MD, Kim A. Eagle, MD, and John A. Elefteriades, MD

Policlinico San Donato IRCCS, Cardiovascular Center "E. Malan," University of Milano, Milan, Department of Cardiology, Cardiac Catheterization Laboratory, University of Modena, Modena, Italy; Department of Internal Medicine, University of Tokyo, Tokyo, Japan; Department of Internal Medicine, University of Michigan Health Systems, Ann Arbor, Michigan; and Yale Thoracic Aortic Center, Yale University School of Medicine, New Haven, Connecticut

A number of new diagnostic screening tools have been developed for the assessment of acute and chronic diseases of the thoracic aorta. Although standardized bloodbased tests capable of detecting individuals at risk for aortic aneurysm and dissection disease are not yet available, our current knowledge is expanding at a rapid rate and the future is very promising. In this review, an update of the contemporary knowledge on blood tests for detecting thoracic aortic diseases in both preclinical and clinical settings is provided, offering the potential to predict adverse aortic events, such as enlargement, rupture, and dissection.

> (Ann Thorac Surg 2010;90:1735–42) © 2010 by The Society of Thoracic Surgeons

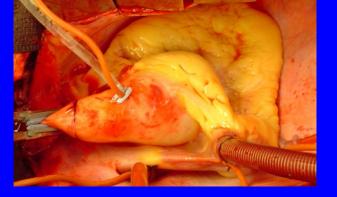
PET?



Truijers M. Endovasc Ther 2008;15:462-7. Reeps C. J Vasc Surg 2008;48:417-23.

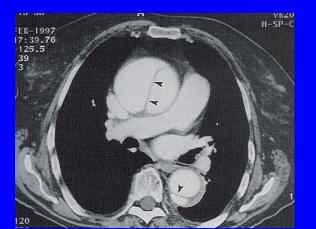
Potential Biomarkers

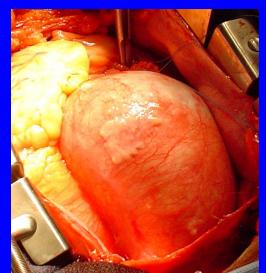
- D-Dimer
- Markers of inflammation
 - CRP
 - CD4+CD28- T-Cells
- Matrix metalloproteinases
- Markers of collagen turn-over
 Elastin Peptide (EP)
- Genetic markers
 - "RNA Signature"


D-Dimer in Aortic Dissection-1

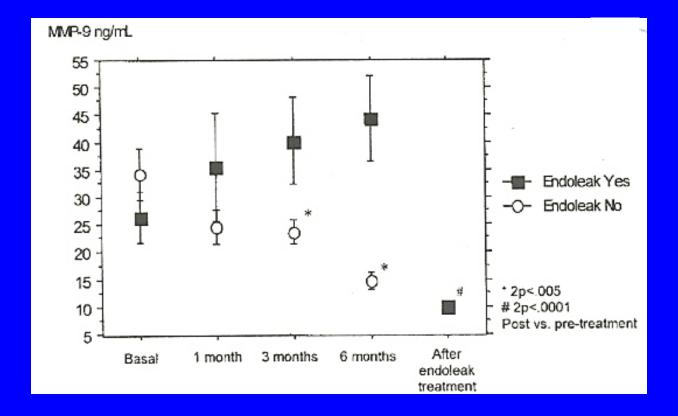
3. Eggebrecht H et al. J Am Coll Cardiol 2004;44:804-9

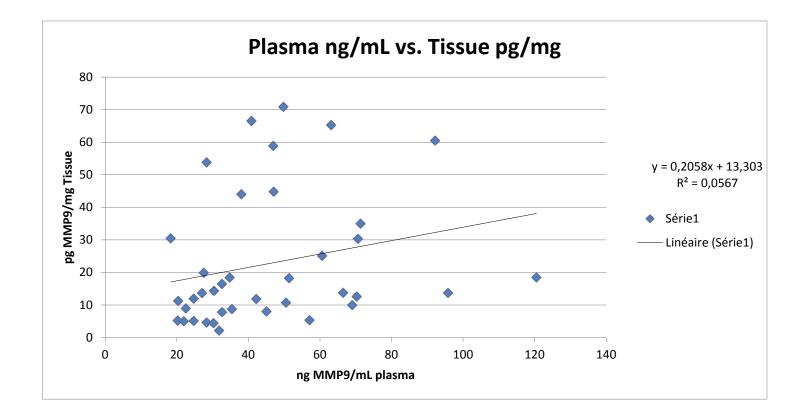
4. Weber T et al. Heart 2006:92:836-837.





Research at Yale and other programs indicates an important etiologic role for excess MMP activity in the destruction of the aortic wall underlying thoracic aortic aneurysm disease.

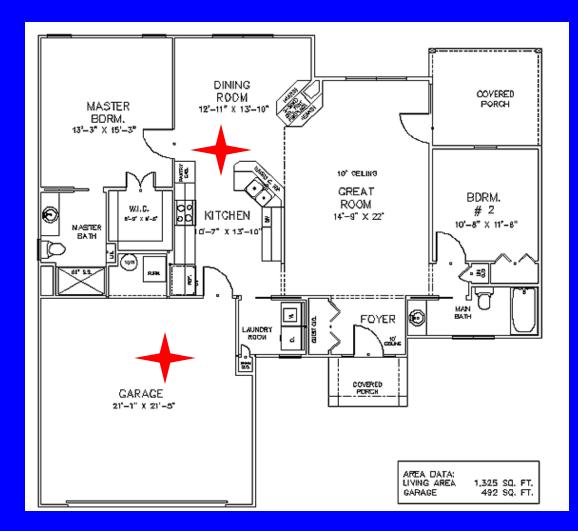




Serum MMP levels successfully predict stent graft failure

Sangiorgi G, et al. Circulation 2001;104[suppl I]:I-288-I-295

MMPs?

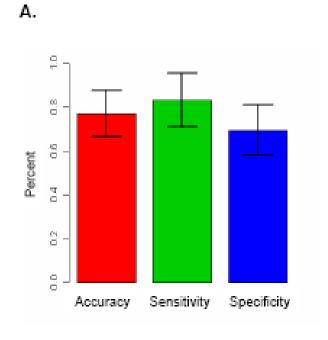


No significant correlations of serum with tissue levels of MMP-9.

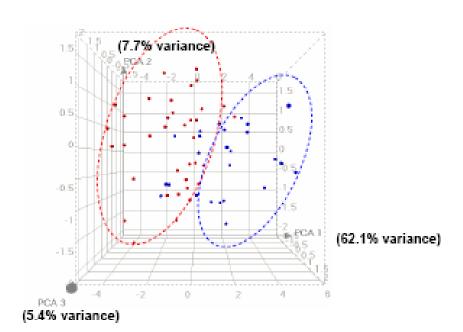
"RNA Signature"

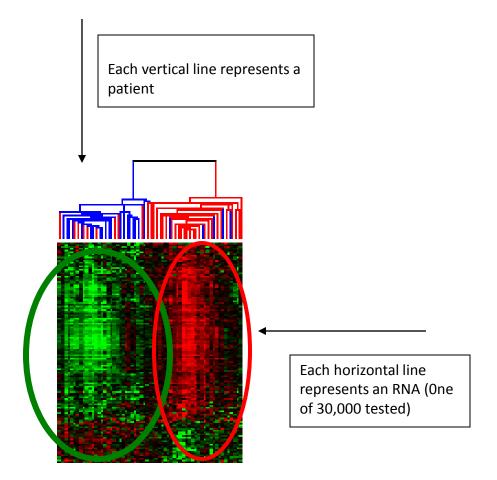
DNA is blueprint

•RNA tells us what rooms (systems) are actively being worked on

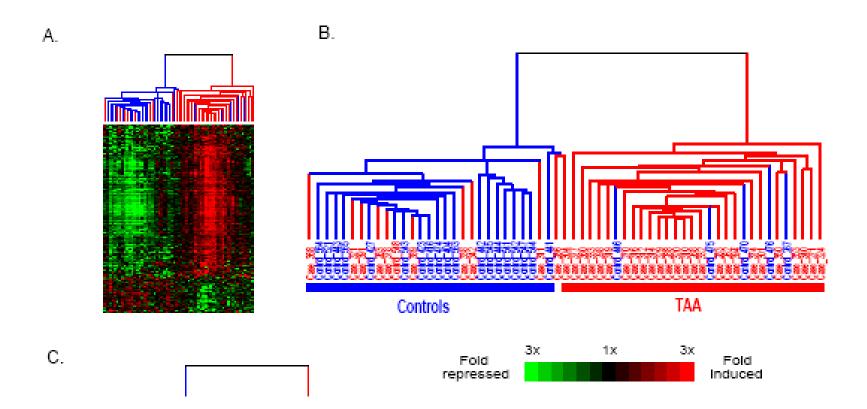


Applied Biosystems Human Whole Genome Survey Microarray





RNA "Signature" in peripheral blood



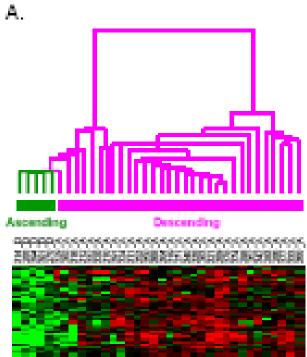
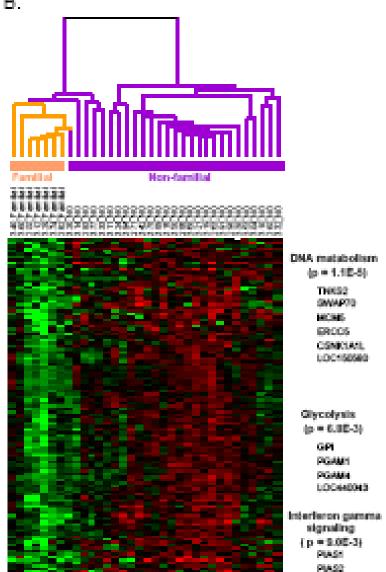
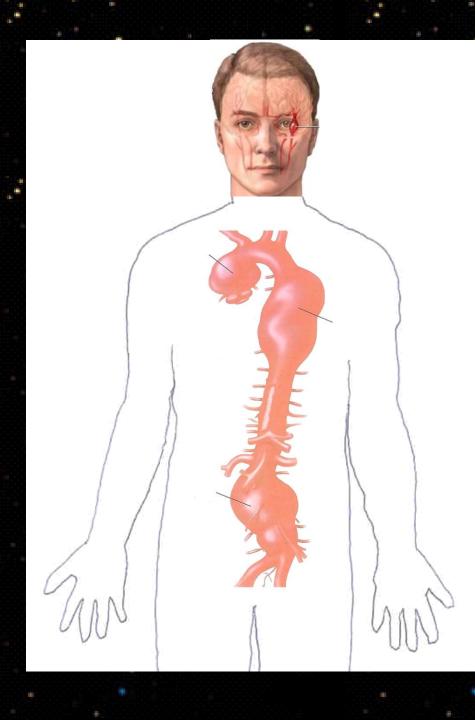
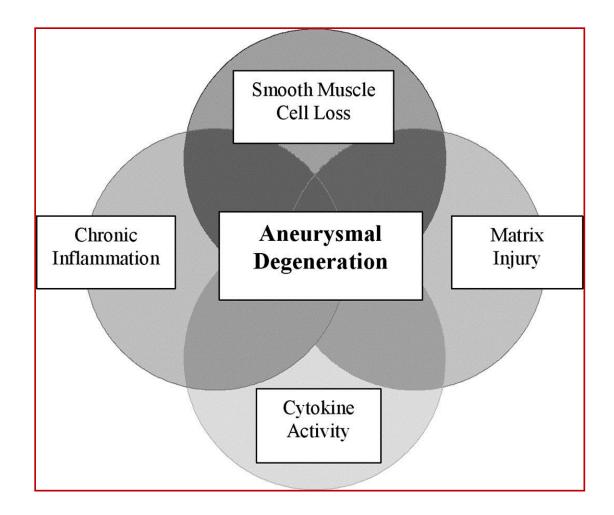

Hierarchical clustering diagrams.

Figure 1

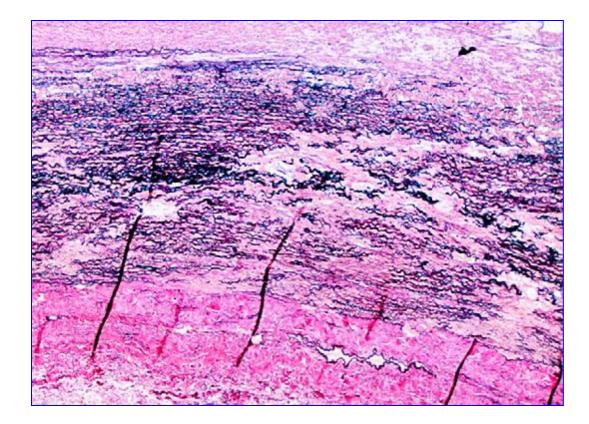

"RNA Signature" genes identified make "physiologic sense": proteolyis, apoptosis, inflammation


			Asc/Desc Ratio	Asc/Desc Ratio
Gene Symbol	Gene_Name	Target RefSeqs	(array)	(TaqMan)
AFF3	AF4/FMR2 family, member 3	NM_002285	2.79	2.27
BACH2	BTB and CNC homology 1, basic leucine zipper transcription factor 2	NM_021813	2.38	2.22
ZNF41	zinc finger protein 41	null	2.33	1.53
ATF2	activating transcription factor 2	NM_001880	2.20	1.58
HIVEP2	human immunodeficiency virus type I enhancer binding protein 2	NM_006734	2.08	1.53
HIVEP1	human immunodeficiency virus type I enhancer binding protein 1	NM_002114	2.00	1.44
ATF1	activating transcription factor 1	NM_005171	1.78	1.33
ORC2L	origin recognition complex, subunit 2-like (yeast)	NM_006190	1.66	1.55
FOXO1A	forkhead box O1A (rhabdomyosarcoma)	NM_002015	1.63	1.48
RAD21	RAD21 homolog (S. pombe)	NM_006265	1.62	1.29
ELF1	E74-like factor 1 (ets domain transcription factor)	NM_172373	1.61	1.35
ELF2	E74-like factor 2 (ets domain transcription factor)	NM_006874	1.59	1.35
MCM3	MCM3 minichromosome maintenance deficient 3 (S. cerevisiae)	NM_002388	1.57	1.45
RPA1	replication protein A1, 70kDa	NM_002945	1.52	1.53
ZNF217	zinc finger protein 217	NM_006526	1.46	2.02
JMJD1A	jumonji domain containing 1A	NM_018433	1.44	1.55
SUPT16H	suppressor of Ty 16 homolog (S. cerevisiae)	NM_007192	1.43	1.63
CCNG1	cyclin G1	NM_004060	1.39	1.53

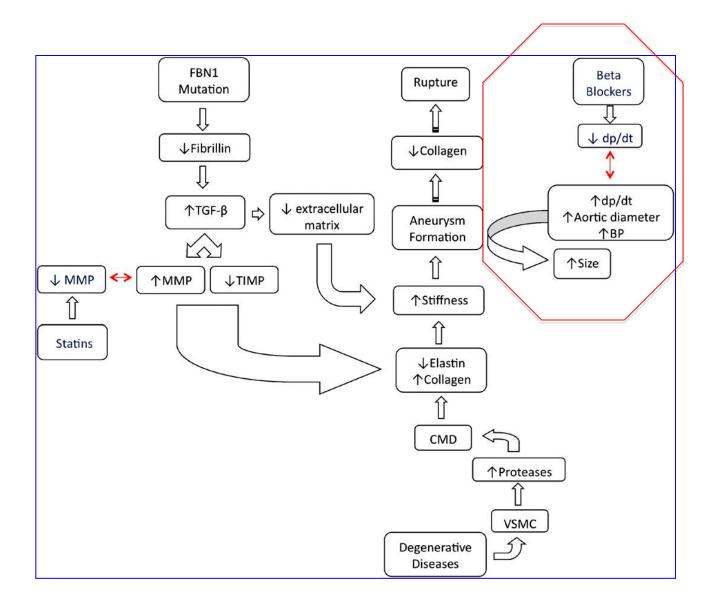
6 R B


FUTURE: Biomarkers for Aortic Disease????...

> Urgently needed.
 > Not a reality yet.
 > Considerable promise for the future.
 > RNA Signature promising
 > Radiographic biomarkers ready to be applied.


THERE IS AN EFFECTIVE MEDICAL TREATMENT FOR THORACIC AORTIC ANEURYSM

John A. Elefteriades, MD William W.L. Glenn Professor of Cardiothoracic Surgery Director, Aortic Institute at Yale-New Haven


Pathogenesis of Aortic Aneurysms

One would think that there would be multiple opportunities for drug Rx to stop this process!

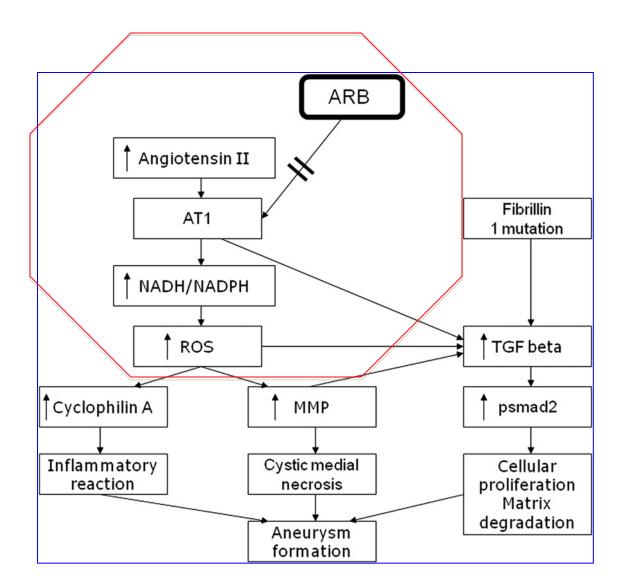
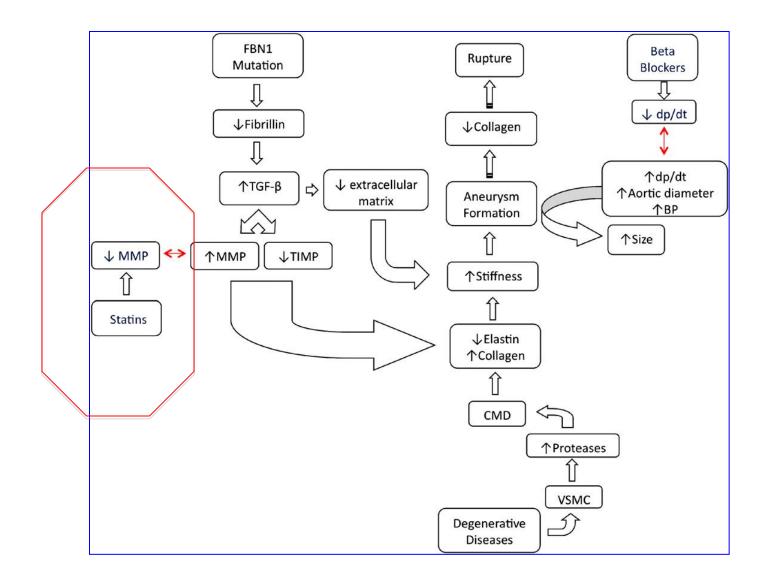


Table: Clinical trials of β -blockers in management of aneurysms				
Aneurysm Type	Author, Year Medicatio	Study Design		Results
TAA	No clinical trials availab	le		
AAA	Lindholt, 1999 Propranolol	RCT of 54 asymptomatic patients with small AAA	(-)	Only 22% were treatable with propranolol for 2 years; increased mortality in β- blocker group
AAA	Propranolol Aneurysm Trial Investigators, CANADA, 2002 Propranolol	Three nonrandomized trials	(-)	Patients with AAAs did not tolerate propranolol well; no significant effect on the growth rate of small AAAs
ААА	Cronenwett; Gadowski; Leach, 1990, 1994, 2005 Propranolol	RCT of asymptomatic AAA (3.0-5.0 cm)	(+)	Decreased rate of AAA expansion in β-blocker group
Marfan syndrome	Shores, 1994 Propranolol	RCT of 70 patients	(+)	Decreased rate of aortic root dilatation and fewer aortic complications in β- blocker group
Marfan syndrome	Gersony, 2007 β- Blockers	Meta-analysis: 9 studies (5 nonrandomized; 1 was a prospective RCT with 802 patients)	(-)	No change in risk of aortic dissection or rupture, cardiovascular surgery, or death
Marfan syndrome	Gambarin, 2009 Losartan vs nebivolol	Open-label phase 3 study will include 291 patients	Ongoing	Primary end point: effect on the progression of aortic root growth

Preclinical and clinical studies of angiotensin receptor blockers in aortic aneurysms


First Author Ref	Model/Population	Subject Number	Findings
Habashi ¹⁵	Mouse, Marfan	10	ARB prevented aneurysm formation
Daugherty 49	Mouse, apoE deficient, AAA	15	AT1 blockade (losartan) prevented aneurysm formation, AT2 blockade promoted it
Nagashima ⁵⁰	Rat, β-aminopropionitrile monofumarate-induced cystic medial degeneration and aortic dissection	15	ACEI but not ARB prevented cystic medial degeneration and aortic dissection
Liao ⁵¹	Rat, elastase-induced, AAA	9	ACEIs but not ARB suppressed AAA formation
Brooke ⁵²	Human, Marfan (retrospective)	18	ARB significantly slowed aortic root dilatation
Hackam ⁵³	Human, AAA (retrospective)	15326	ACEIs were, but ARBs not protective against aortic aneurysm rupture

Other: Doxycycline, etc.

Authors	Study Design	Intervention	Patients, n	Findings
Shores et al ⁵⁹	Marfan syndrome; randomized, prospective study; ~10-y mean follow-up	Propranolol	32 Treated, 38 control subjects	Propranolol caused significantly reduced aortic root dilatation
Gadowski et al ⁵⁷	Infrarenal AAA; observational, prospective study; 43-mo mean follow-up	β-blocker	38 Treated, 83 control subjects	Patients with large aneurysms on β-blockers had significantly lower AAA expansion rate
Leach et al ⁵⁸	AAA; observational, retrospective study; 34-mo mean follow-up	β-blocker	12 on β- blocker, 15 not on β-blocker	Patients on β-blocker had significantly lower AAA expansion rate
Propranolol Aneurysm Trial Investigators ⁶¹	AAA; prospective, randomized, double-blind study; 2.5-y mean follow- up	Propranolol	276 on propranolol, 272 on placebo	Propranolol did not significantly affect small AAA growth; high discontinuation rate of propranolol
Lindholt et al ⁶⁰	AAA; randomized, controlled study; 2- y follow-up	Propranolol	54 Asymptomatic patients	Increased mortality in propranolol group; only 22% could be treated
Baxter et al ⁶⁶	AAA; prospective, observational study; 6-mo phase II study	Doxycycline	36 Patients	Doxycycline was safe and caused MMP-9 level decrease
Mosorin et al ⁶⁷	AAA; randomized, placebo controlled, double-blind study; 18-mo follow-up	Doxycycline	17 on doxycycline, 15 on placebo	Aneurysm expansion rate was significantly lower in the doxycycline group
Vammen et al ⁶⁸	AAA; randomized, double-blind study; 1.5-y mean follow-up	Roxithromycin	43 on roxithromycin, 49 on placebo	4 wk of therapy reduced AAA expansion rate
Sweeting et al ⁷⁵	AAA; prospective, observational study; 1.9-y mean follow-up	ACEI	169 on ACEI, 1532 not on ACEI	Patients on ACEI had a faster AAA growth rate than patients not on ACEI
Ferguson et al ⁷⁰	AAA; observational, prospective study; 5-y median follow-up	Statins	394 on statins, 258 not on statins	Statins were not associated with reduced AAA growth rate
Gambarin ⁶²	Marfan syndrome; open-label phase III study	Losartan, nebivolol	291 patients	Ongoing

AAA indicates abdominal aortic aneurysm; MMP, matrix metalloproteinase; and ACEI, angiotensin-converting enzyme inhibitor.

Statin Pleiotrophy				
Effect	Benefit			
Increased synthesis of nitric oxide	Improvement of endothelial dysfunction			
Inhibition of free radical release				
Decreased synthesis of endothelin-1				
Inhibition of LDL-C oxidation				
Upregulation of endothelial progenitor cells				
Reduced number and activity of inflammatory cells	Reduced inflammatory response			
Reduced levels of C-reactive protein				
Reduced macrophage cholesterol accumulation	Stabilization of atherosclerotic plaques			
Reduced production of metalloproteinases				
Inhibition of platelet adhesion/aggregation	Reduced thrombogenic response			
Reduced fibrinogen concentration				
Reduced blood viscosity				

Comparison of the Effect on Long-Term Outcomes in Patients With Thoracic Aortic Aneurysms of Taking Versus Not Taking a Statin Drug

Ion S. Jovin, MD^a,*, Mona Duggal, MBBS, MHS^b, Keita Ebisu, MS^d, Hyung Paek, MD^b, A. Dana Oprea, MD^a, Maryann Tranquilli, RN^c, John Rizzo, PhD^e, Redin Memet, MD^a, Marina Feldman, MD^c, James Dziura, PhD^a, Cynthia A. Brandt, MD, MPH^b, and John A. Elefteriades, MD^c

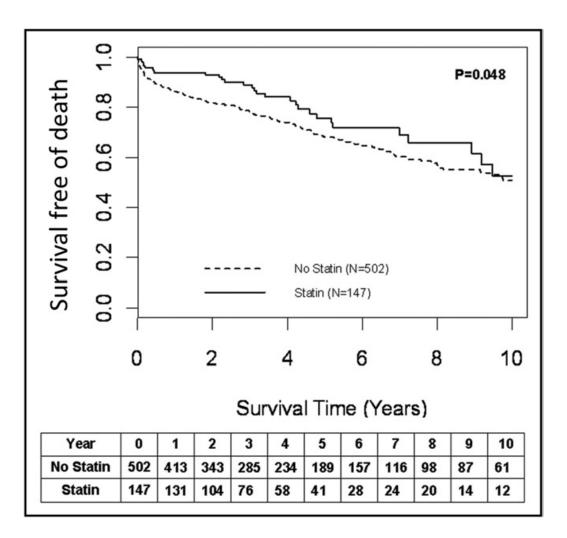
The potential of medical therapy to influence the courses and outcomes of patients with thoracic aortic aneurysms is not known. The aim of this study was to determine whether statin intake is associated with improved long-term outcomes in these patients. A total of 649 patients with thoracic aortic aneurysms were studied, of whom 147 were taking statins at their first presentation and 502 were not. After a median follow-up period of 3.6 years. 30 patients (20%) taking statins had died, compared with 167 patients (33%) not taking statins (hazard ratio 0.68, 95% confidence interval 0.46 to 1, p = 0.049); 87 patients (59%) taking statins reached the composite end point of death, rupture, dissection, or repair compared with 378 patients (75%) not taking statins (hazard ratio 0.72, 95% confidence interval 0.57 to 0.91, p = 0.006). After adjustments for co-morbidities, the association between statin therapy and the composite end point was driven mainly by a reduction in aneurysm repairs (hazard ratio 0.57 95% confidence interval 0.4 to 0.83, p = 0.003). On Kaplan-Meier analysis, the survival rate of patients taking statins was significantly better (p = 0.047). In conclusion, the intake of stains was associated with an improvement in long-term outcomes in this cohort of patients with thoracic aortic aneurysms. This was driven mainly by a reduction in aneurysm repairs. © 2012 Elsevier Inc. All rights reserved. (Am J Cardiol 2012;109:1050-1054)

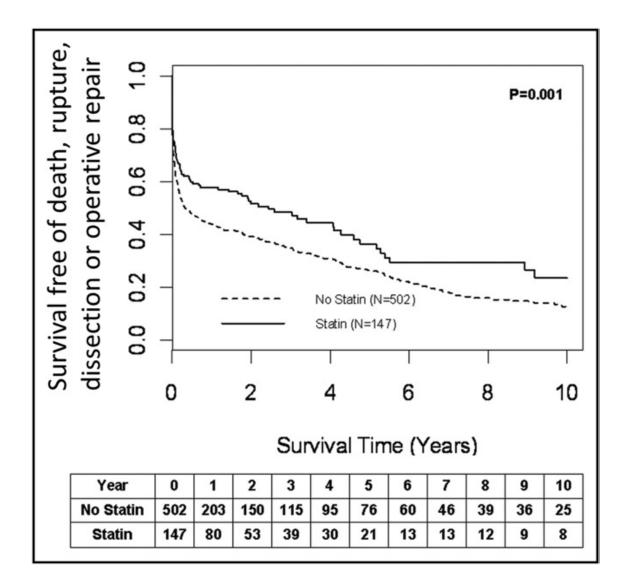
Yale Statin Study

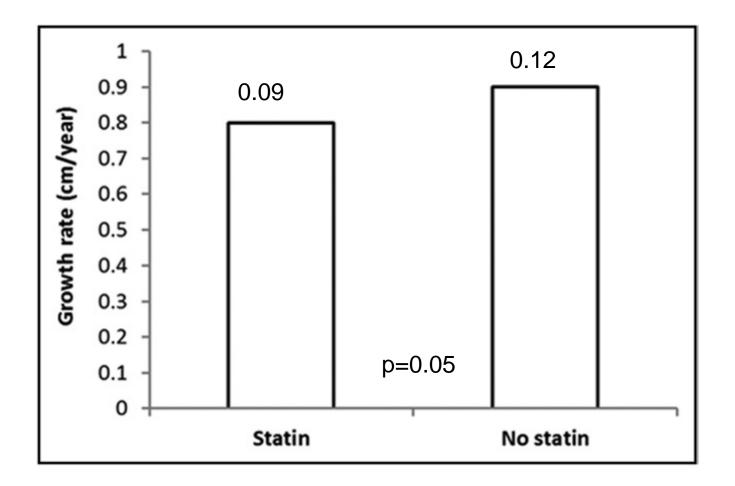
- 649 patients
 - 147 on statins
 - 502 not on statins
- Median f/u 3.6 yrs (range 1 to 10)

- Survival
- Composite end-point (death, rupture, dissection, surgery)

Table: Aneurysm locations


Location	All (n = 649)	Statin (n = 147)	No Statin (n = 502)	p Value*
Ascending	425 (65.4%)	101 (68.7%)	324 (64.5%)	0.35
Aortic arch	60 (9.2%)	13 (8.8%)	47 (9.3%)	0.84
Descending	129 (19.8%)	26 (17.6%)	103 (20.5%)	0.44
Thoracoabdominal	61 (9.4%)	16 (10.8%)	45 (8.9%)	0.48


*Statin vs no statin.


Mortality

	No Statins	Statins	Total
Number	502	147	649
Death	167 (33%)	30 (20%)	
			p=0.006 OR 0.72

Mean f/u 3.6 years

Table: Variables included in the multivariate analysis of outcomes of patients with thoracic aortic aneurysms					
Variable	Effect Size for Death (95% CI)	p Value	Effect Size for Death, Dissection, Rupture, or Repair (95% CI)	p Value	
Age Male gender β blockers Aspirin ARBs Hypertension PVD/CAD Diabetes	1.005 (0.99–1.01) 0.68 (0.48–0.94) 0.86 (0.62–1.2) 1.07 (0.57–2.03) 0.85 (0.36–1.98) 1.09 (0.75–1.57) 1.21 (0.84–1.75) 1.73 (1.01–2.95)	0.48 0.02 0.39 0.81 0.71 0.64 0.29 0.04	0.99 (0.98–1.001) 0.81 (0.66–1.01) 0.99 (0.80–1.23) 1.69 (1.13–2.52) 0.60 (0.33–1.08) 0.99 (0.78–1.25) 0.96 (0.76–1.23) 1.03 (0.68–1.55)	0.11 0.06 0.96 0.01 0.09 0.96 0.78 0.88	

Statins are effective in combating TAA

- Lower mortality
- Lower combined end-point
 - Death
 - Rupture
 - Dissection
 - Operative repair
- Slower growth rate